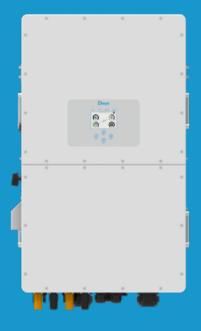


Inverter ibrido

SUN-29.9K-SG01HP3-EU-BM3


SUN-30K-SG01HP3-EU-BM3

SUN-35K-SG01HP3-EU-BM3

SUN-40K-SG01HP3-EU-BM4

SUN-50K-SG01HP3-EU-BM4

Manuale d'uso

Contenuti

1. Introduzioni sulla sicurezza	01-02
2. Presentazione del prodotto	02-06
2.1 Panoramica del prodotto	
2.2 Dimensioni del prodotto	
2.3 Caratteristiche del prodotto	
2.4 Architettura del sistema di base	
2.5 Requisiti per la movimentazione del prodotto	
3. Installazione	06-30
3.1 Elenco delle componenti	00 30
3.2 Istruzioni di montaggio	
3.3 Definizione della porta funzionale	
3.4 Collegamento della batteria	
3.5 Connessione alla rete e connessione al carico di backup	
3.6 Collegamento FV	
3.7 Installazione di contatori o CT	
3.8 Collegamento a terra (obbligatorio) 3.9 Collegamento del Datalogger	
3.10 Schema elettrico con linea neutra a terra	
3.11 Schema elettrico con linea neutra senza messa a terra	
3.12 Schema applicativo tipico del sistema On-Grid	
3.13 Schema applicativo tipico del generatore diesel	
3.14 Schema di collegamento in parallelo trifase	
4. FUNZIONAMENTO	31
4.1 Accensione/Spegnimento	
4.2 Funzionamento e pannello di visualizzazione	
5. Icone del display LCD	32-46
5.1 Schermata principale	
5.2 Pagine in dettaglio	
5.3 Pagina Curva-Solare e Carico e Rete	
5.4 Menù di configurazione del sistema	
5.5 Menù di configurazione di base	
5.6 Menù di configurazione della batteria	
5.7 Menu di configurazione della modalità di lavoro del sistema	
5.8 Menù configurazione di rete	
5.9 Porta del generatore - Utilizzare il menu di configurazione	
5.10 Menu di impostazione delle funzioni avanzate	
5.11 Menù delle informazioni del dispositivo	
6. Modalità	
7. Garanzia	47-48
8. Risoluzione dei problemi	
9. Scheda tecnica	
10. Appendice I	
11. Appendice II	
12. Dichiarazione di conformità UE	57-58

Informazioni su questo manuale

Questo manuale fornisce informazioni e linee guida per l'installazione, il funzionamento e la manutenzione dell'inverter SUN-(29.9/30/35/40/50)K-SG01HP3-EU-BM3/4. Si tenga conto che non contiene informazioni complete sul sistema fotovoltaico (FV).

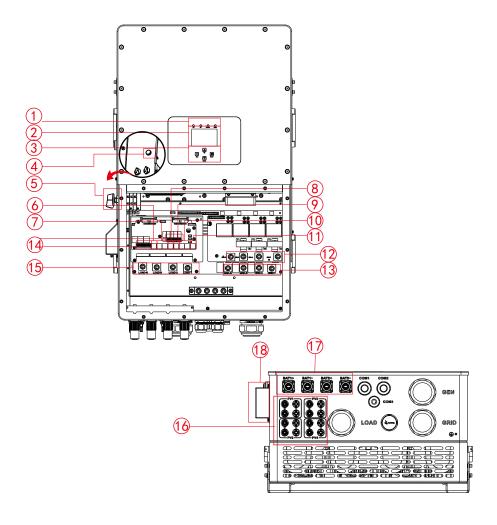
Come utilizzare questo manuale

Prima di intraprendere qualsiasi operazione che coinvolga l'inverter, è fondamentale leggere attentamente questo manuale e tutti i documenti associati. Assicurarsi che questi documenti siano conservati in modo sicuro e siano facilmente accessibili in ogni momento.

Dovete essere consapevoli che il contenuto di questo manuale può subire aggiornamenti periodici o revisioni derivanti dal continuo sviluppo del prodotto. Di conseguenza, le informazioni contenute nel presente documento sono soggette a modifiche senza preavviso. Il manuale più recente può essere acquisito tramite: service@deye.com.cn

1. Introduzioni sulla sicurezza

Descrizione dei segnali


Segnale	Descrizione
A	Attenzione, il simbolo del rischio di scossa elettrica indica importanti istruzioni di sicurezza che, se non seguite correttamente, potrebbero provocare scosse elettriche.
\triangle	I terminali di ingresso CC dell'inverter non devono essere messi a terra.
	Superficie ad alta temperatura, non toccare la custodia dell'inverter.
A () _{5min}	I circuiti CA e CC devono essere scollegati separatamente e il personale addetto alla manutenzione deve attendere 5 minuti prima che siano completamente spenti prima di poter iniziare a lavorare.
CE	Marchio di conformità CE
(i	Leggere attentamente le istruzioni prima dell'uso.
	Simbolo di marcatura dei dispositivi elettrici ed elettronici secondo la Direttiva 2002/96/CE. Indica che il dispositivo, gli accessori e l'imballaggio non devono essere smaltiti come rifiuti urbani indifferenziati e devono essere raccolti separatamente al termine dell'utilizzo. Seguire le ordinanze o i regolamenti locali per lo smaltimento o contattare un rappresentante autorizzato del produttore per informazioni relative allo smaltimento dell'apparecchiatura.

- · Questo capitolo contiene importanti istruzioni per la sicurezza e il funzionamento. Leggere e conservare questo manuale per riferimenti futuri.
- · Prima di utilizzare l'inverter, leggere le istruzioni e i segnali di avvertenza della batteria e le sezioni corrispondenti nel manuale di istruzioni.
- \cdot Non smontare l'inverter. Se si necessita di manutenzione o riparazione, portarlo ad un centro di assistenza professionale.
- · Un riassemblaggio improprio potrebbe provocare scosse elettriche o incendi.
- · Per ridurre il rischio di scosse elettriche, scollegare tutti i cavi prima di tentare qualsiasi operazione di manutenzione o pulizia. Lo spegnimento dell'unità non ridurrà questo rischio.
- · Attenzione: Solo il personale qualificato può installare questo dispositivo con la batteria.
- · Non ricaricare mai una batteria congelata.
- · Per un funzionamento ottimale di questo inverter, seguire le specifiche richieste per selezionare la dimensione del cavo appropriata. È molto importante utilizzare correttamente questo inverter.
- · Prestare molta attenzione quando si lavora con strumenti metallici sopra o intorno alle batterie. La caduta di uno strumento può causare scintille o cortocircuiti nelle batterie o in altre parti elettriche, nonché provocare un'esplosione.
- · Seguire scrupolosamente la procedura di installazione quando si desidera scollegare i terminali CA o CC. Fare riferimento alla sezione "Installazione" di questo manuale per i dettagli.
- · Istruzioni per la messa a terra: questo inverter deve essere collegato a un sistema di cablaggio con messa a terra permanente. Assicurarsi di rispettare i requisiti e le normative locali per installare questo inverter.
- · Non provocare mai un cortocircuito tra l'uscita CA e l'ingresso CC. Non collegare alla rete elettrica in caso di cortocircuito dell'ingresso CC.

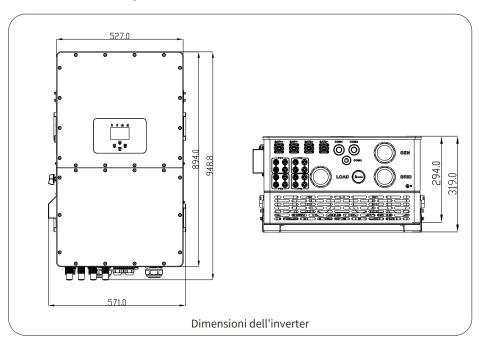
2. Presentazione del prodotto

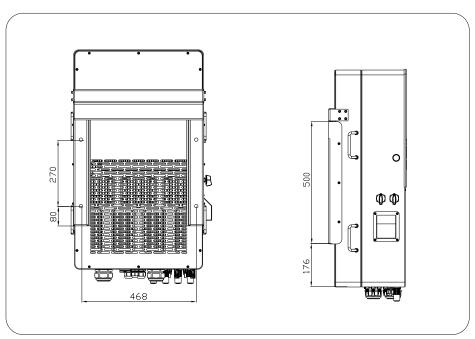
Questo è un inverter multifunzionale, che combina le funzioni di inverter, caricatore solare e caricabatteria per offrire un supporto di alimentazione ininterrotto con dimensioni portatili. Il suo display LCD completo offre pulsanti configurabili dall'utente e facilmente accessibili come la ricarica della batteria, la ricarica CA/solare e una tensione di ingresso accettabile in base alle diverse applicazioni.

2.1 Panoramica del prodotto

1: Spie dell'inverter 7: Porta parallela 13: Rete

2: Display LCD 8: Porta CAN 14: Porta di funzione


3: Pulsanti funzione 9: Porta DRM 15: Carico


4: Pulsante di accensione/spegnimento 10: Porta BMS 16: Ingresso FV

5: Interruttore CC 11: Porta RS485 17: Ingresso batteria

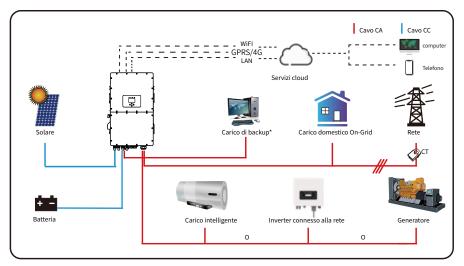
6: Porta del contatore 12: Ingresso generatore 18: Interfaccia Wi-Fi

2.2 Dimensioni del prodotto

2.3 Caratteristiche del prodotto

- Inverter trifase a onda sinusoidale pura 230V/400V.
- Autoconsumo e immissione in rete.
- Riavvio automatico durante il ripristino CA.
- Priorità di alimentazione programmabile per batteria o rete.
- Modalità operative multiple programmabili: On-Grid, Off-Grid e UPS.
- Corrente/tensione di carica della batteria configurabile in base alle applicazioni tramite l'impostazione LCD.
- Configurabile CA/Solare/Generatore/Caricabatteria con priorità tramite l'impostazione LCD.
- Compatibile con la tensione di rete o con l'alimentazione del generatore.
- Protezione da sovraccarico/surriscaldamento/cortocircuito.
- Design del caricabatterie Mart per prestazioni ottimizzate della batteria.
- Con la funzione di limite, previene il trabocco di potenza in eccesso verso la rete.
- Supporta il monitoraggio WIFI e dispone di 3 o 4 tracker MPP integrati, 1 tracker MPP può collegare 2 stringhe FV.
- Ricarica MPPT intelligente a tre stadi impostabile per prestazioni ottimizzate della batteria.
- Funzione tempo di utilizzo.
- Funzione di carico intelligente.

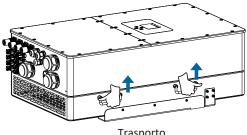
2.4 Architettura del sistema di base


La seguente illustrazione mostra l'applicazione di base di questo inverter.

Include anche i seguenti dispositivi per avere un sistema di funzionamento completo.

- Generatore (per la modalità Off-Grid) o Utenze di Rete
- Moduli FV

Consultare il proprio integratore di sistema per altre possibili architetture di sistema a seconda delle proprie esigenze.


Questo inverter è progettato per alimentare una gamma di apparecchi comunemente presenti nelle case e negli uffici, compresi apparecchi a motore come frigoriferi e unità di condizionamento dell'aria. Prima dell'utilizzo si consiglia di verificare la compatibilità dell'apparecchio con questo inverter.

^{*}Collegato alla porta CARICO

2.5 Requisiti per la movimentazione del prodotto

Sollevare l'inverter dalla scatola di imballaggio e trasportarlo nel luogo di installazione previsto.

Trasporto

ATTENZIONE:

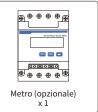
Una manipolazione impropria può causare lesioni personali!

- · Prevedere un numero adeguato di persone per trasportare l'inverter in base al suo peso e il personale addetto all'installazione deve indossare dispositivi di protezione come scarpe e guanti antiurto.
- · Posizionare l'inverter direttamente su un terreno duro può causare danni al suo involucro metallico. Sotto l'inverter devono essere posizionati materiali protettivi come spugne o cuscini in schiuma.
- Spostare l'inverter con una o due persone o utilizzando uno strumento di trasporto adeguato.
- · Spostare l'inverter afferrandolo per le maniglie. Non spostare l'inverter afferrandolo per i terminali.

3. 3. Installazione

3.1 Elenco delle componenti

Controllare l'apparecchiatura prima dell'installazione. Assicurarsi che nulla sia danneggiato nell' imballaggio. Dovete aver ricevuto gli articoli seguenti presenti nell' imballaggio:



Morsetto del sensore

Accessori per connettori spina batteria x4

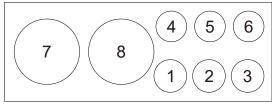
Connettori CC+/CC- con terminale metallico xΝ

Viti di montaggio in acciaio inossidabile M4*12 x9

Anello magnetico per cavo di comunicazione di BMS e contatore x3 (23×33×15 mm)

Anello magnetico per CT x3 $(31\times29\times19 \text{ mm})$

Anello magnetico per cavi CA x3 $(50 \times 65 \times 25 \text{ mm})$


Chiave speciale per connettore solare fotovoltaico x1

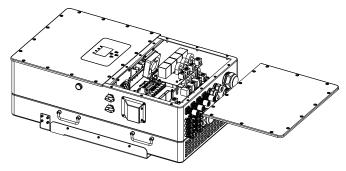
Resistenza di corrispondenza x1

*9:Se questo anello magnetico non è incluso nella confezione degli accessori, dovrebbe essere già preinstallato nella posizione di ingresso del cavo della rete.

Scatola di imballaggio dell'anello magnetico

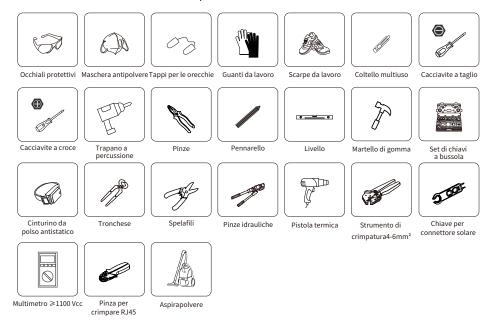
1,2,3:23×33×15 mm 4.5.6:31×29×19mm $7.8.9:50\times65\times25 \text{ mm}$

*9 posizionarlo sopra la copertura del materiale EPE

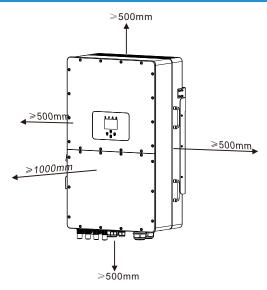

3.2 Istruzioni di montaggio

Precauzioni per l'installazione

Questo inverter Ibrido è progettato per un uso esterno (IP65). Assicurarsi che il sito di installazione soddisfi le seguenti condizioni:


- · Non esposto alla luce solare diretta, alla pioggia o all'accumulo di neve durante l'installazione e il funzionamento.
- · Non in aree in cui sono conservati materiali altamente infiammabili.
- · Non in aree potenzialmente esplosive.
- · Non esporre direttamente all'aria fredda per evitare la formazione di condensa all'interno dell'involucro dell'inverter.
- · Non vicino all'antenna televisiva o al cavo dell'antenna.
- · Non essere posto in un luogo con un'altitudine superiore a circa 2000 metri sul livello del mare.
- · Non in ambienti soggetti a precipitazioni o umidità (>95%)

Un eccessivo accumulo di calore, forti piogge o ristagni d'acqua possono influire sulle prestazioni e sulla longevità dell'inverter. Prima di collegare tutti i cavi, togliere il coperchio metallico rimuovendo le viti come mostrato di seguito:

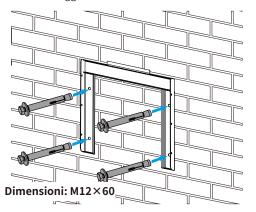

Strumenti di installazione

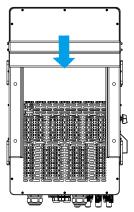
Gli strumenti di installazione possono fare riferimento a quelli consigliati di seguito. Inoltre, utilizzare altri strumenti ausiliari sul posto.

Considerare i seguenti punti prima di scegliere il luogo di installazione:

- · Selezionare una parete verticale con capacità portante per l'installazione, adatta per l'installazione su cemento o altre superfici non infiammabili, e installare come di seguito.
- \cdot Installare questo inverter all'altezza degli occhi per consentire la lettura del display LCD in ogni momento.
- · Si consiglia che la temperatura ambiente sia compresa tra -40 e 60 °C per garantire un funzionamento ottimale.
- · Assicurarsi di mantenere una distanza sufficiente tra gli altri oggetti e le superfici dell'inverter come mostrato nel diagramma per garantire una sufficiente dissipazione del calore e avere spazio sufficiente per rimuovere i cavi.

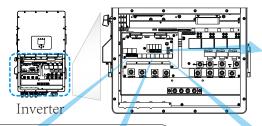
Per una corretta ventilazione dell'inverter ed evitare il surriscaldamento, lasciare uno spazio di circa 50 cm attorno all'inverter e almeno 100 cm nella parte anteriore, come si può vedere nella figura qui sotto.

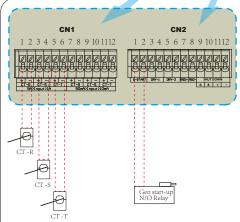

Montaggio dell'inverter


Ricordatevi che questo inverter è pesante! Fare attenzione quando si estrae dall'imballaggio. Scegliere la testa del trapano consigliata (come mostrato nella foto sotto) per praticare 4 fori sulla parete, profondi 62-70 mm.

1. Utilizzare un martello adeguato a inserire il bullone ad espansione nei fori.

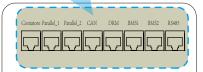
2. Svitare i dadi dei bulloni di espansione, allineare i fori della staffa di montaggio con i 4 bulloni di espansione, quindi spingere la staffa di montaggio e serrare i dadi dei bulloni di espansione.


3. Montare l'inverter sulla staffa di montaggio e utilizzare le viti per fissare l'inverter con la staffa di montaggio.


Installazione della staffa di montaggio dell'inverter

3.3 Definizione della porta funzionale

Interruttore DIP: per le impostazioni di comunicazione in un sistema parallelo.



CN1:

CT-R (1,2,7,8): trasformatore di corrente (CT-R) per morsetti in modalità "esportazione zero a CT" su L1 in un sistema trifase.

CT-S (3,4,9,10): trasformatore di corrente (CT-S) per morsetti in modalità "esportazione zero a CT" su L2 in un sistema trifase.

CT-T (5,6,11,12): trasformatore di corrente (CT-T) per morsetti in modalità "esportazione zero a CT" su L3 in un sistema trifase.

Contatore: per la comunicazione del contatore di energia.

Parallel_1: Porta di comunicazione parallela 1.

Parallel_2: Porta di comunicazione parallela 2 (Parallela A e B sono uguali e non hanno ordini particolari).

CAN: Riservato.

DRM: Interfaccia logica per AS/NZS 4777.2:2020.

BMS1: Porta BMS per porta di comunicazione della batteria 1.

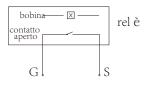
BMS2: Porta BMS per porta di comunicazione della batteria 2.

RS485: Porta RS485.

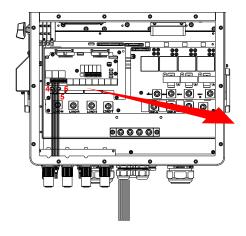
Se la corrente secondaria del CT rientra nell'intervallo 1A-5A, utilizzare i terminali 1-6. Se la corrente secondaria del CT rientra nell'intervallo 10mA-50mA, utilizzare i terminali 7-12.

CN2:

G-start (1,2): segnale di contatto pulito per l'avvio del generatore diesel.

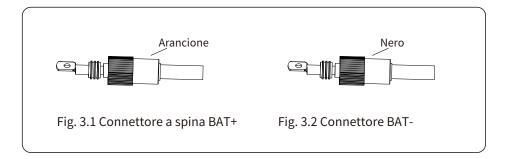

Quando il "segnale GEN" è attivo si accenderà il contatto aperto (GS) (nessuna uscita di tensione).

DRY-1 (3,4): Uscita a contatto pulito. Quando l'inverter è in modalità Off-Grid e viene controllata la "modalità isola di segnale", il contatto pulito si accenderà.


DRY-2 (5,6): riservato.

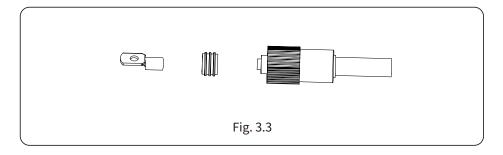
RSD+, RSD- (7,8): Quando la batteria è collegata e l'inverter è nello stato "ON", fornirà 12 V CC.

SHUTDOWN (9,10,11,12): Se i terminali "B" e "B" (9 e 10) sono cortocircuitati con il collegamento del cavo o è presente un ingresso 12 V CC sul terminale "+" e "-" (11 e 12), l'inverter emetterà un allarme (F22) e si spegnerà immediatamente.


GS (segnale di avvio del generatore diesel)

3.4 Collegamento della batteria

Per un funzionamento sicuro e conforme, è necessario un dispositivo di protezione o disconnessione da sovracorrente CC separato tra la batteria e l'inverter. In alcune applicazioni potrebbe non essere necessario un sezionatore, ma è sempre essenziale disporre di una protezione da sovracorrente CC. Fare riferimento all'amperaggio tipico a **pagina 28** per la dimensione del fusibile o dell'interruttore automatico richiesta.


Suggerimento per la sicurezza:

Utilizzare un cavo CC approvato per il sistema fotovoltaico.

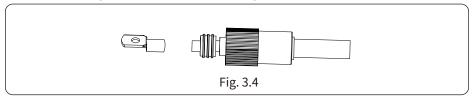
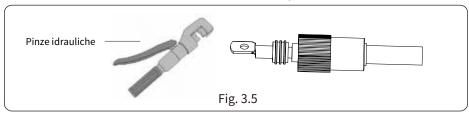
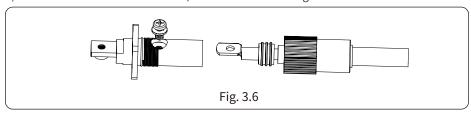
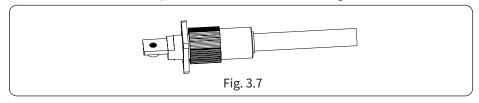
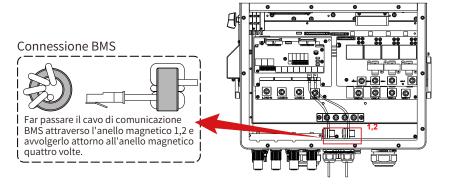

Modello	Sezione trasve	ersale (mm²)
Modello	Allineare	Valore consigliato
29.9/30/35/40/50kW	10-16 (6-4AWG)	10(6AWG)

Grafico 3-2


I passaggi per assemblare i connettori della batteria sono elencati di seguito: a) Passare il cavo attraverso il terminale, come mostrato in Fig. 3.3.


b) Porre l'anello di gomma, come mostrato nella figura 3.4.


c) Crimpare il terminale metallico, come mostrato nella Figura 3.5.



d) Fissare il terminale con un bullone, come mostrato nella figura 3.6.

e) Fissare il terminale con la copertura esterna, come mostrato in figura 3.7.

3.5 Connessione alla rete e connessione al carico di backup

- · Prima del collegamento alla rete, è necessario installare un interruttore CA separato tra l'inverter e la rete, nonché tra il carico di backup e l'inverter. Ciò garantirà che l'inverter possa essere disconnesso in modo sicuro durante la manutenzione e completamente protetto dalla sovracorrente. Controllare i valori consigliati nelle tabelle seguenti in base alle normative locali di ciascun paese. Le specifiche consigliate per gli interruttori CA qui si basano sulla corrente di passaggio CA continua massima dell'inverter; è inoltre possibile scegliere l'interruttore CA del lato di backup in base alla corrente operativa totale effettiva di tutti i carichi di backup.
- · Sono presenti tre morsettiere con i contrassegni "Rete", "Carico" e "GEN". Non collegare in modo errato i connettori di ingresso e di uscita.

Interruttore CA per carico di backup

Modello	Interruttore CA consigliato
29.9/30/35/40/50kW	240A

Interruttore CA per la rete

Modello	Interruttore CA consigliato
29.9/30/35/40/50kW	240A

\bigwedge

Nota:

Nell'installazione finale, con l'apparecchiatura sarà installato un interruttore certificato secondo IEC 60947-1 e IEC 60947-2.

Tutto il cablaggio deve essere eseguito da personale qualificato. È molto importante per la sicurezza del sistema e il funzionamento efficiente utilizzare un cavo appropriato per il collegamento dell'ingresso CA. Per ridurre il rischio di lesioni, utilizzare il cavo consigliato appropriato come di seguito. Di seguito sono riportate due tabelle; la prima tabella consiglia le specifiche del cavo in base alla corrente di bypass (passaggio CA massimo continuo), e la seconda tabella si basa sulla Corrente di Uscita Sbilanciata Massima Trifase.

Connessione alla rete e connessione al carico di backup (fili in rame) (bypass)

Modello	Dimensione del filo	Sezione del cavo(mm²)	Valore di coppia (max)
29.9/30/35/40/50kW	4/0AWG	95	28.2Nm

Connessione alla rete e connessione al carico di backup (fili in rame)

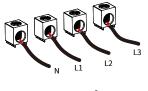
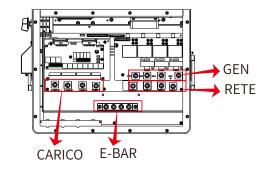
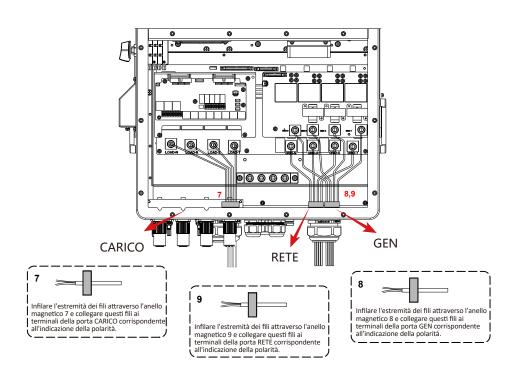

Modello	Dimensione del filo	Sezione del cavo(mm²)	Valore di coppia (max)
29.9/30kW	2AWG	25	12.4Nm
35kW	1AWG	35	12.4Nm
40kW	0AWG	50	12.4Nm
50kW	3/0AWG	70	16.9Nm

Grafico 3-3 Dimensioni consigliate per i cavi CA


Seguire i passaggi seguenti per implementare la connessione di ingresso/uscita CA:


1. Prima di effettuare il collegamento alla Rete, al Carico e alla porta Gen, assicurarsi di spegnere prima l'interruttore o il sezionatore CA.

2. Spelare l'isolamento dei cavi CA per circa 10 mm, inserire i cavi CA secondo le polarità indicate sulla morsettiera e serrare i terminali. Assicurarsi di collegare i fili N e i fili PE corrispondenti anche ai relativi terminali.

Assicurarsi che la fonte di alimentazione CA sia scollegata prima di tentare di collegarla all'unità.

3. Assicurarsi che i cavi siano collegati saldamente.

4. Alcuni elettrodomestici, come i condizionatori e i frigoriferi, potrebbero richiedere un ritardo prima di ricollegarli dopo un'interruzione di corrente. Questo ritardo consente al gas refrigerante di stabilizzarsi e previene potenziali danni. Controllare se il proprio apparecchio è dotato di una funzione di ritardo incorporata prima di collegarlo al nostro inverter. Esempi di elettrodomestici che potrebbero richiedere un ritardo includono:

Condizionatori d'aria: Bilanciamento del gas refrigerante.

Frigoriferi: Stabilizzare il compressore.

Congelatori: Permettere al sistema di raffreddamento di bilanciarsi.

Pompe di calore: Protezione dalle fluttuazioni di potenza.

Questo inverter proteggerà i vostri elettrodomestici attivando un guasto da sovraccarico se non è presente alcun ritardo. Tuttavia, potrebbero comunque verificarsi danni interni. Fare riferimento alla documentazione del produttore per i requisiti specifici di ritardo.

3.6 Collegamento FV

Prima di effettuare il collegamento ai moduli FV, installare un interruttore automatico CC separato tra l'inverter e i moduli fotovoltaici. È molto importante per la sicurezza del sistema e il funzionamento efficiente utilizzare un cavo appropriato per il collegamento del modulo fotovoltaico.

Per evitare qualsiasi malfunzionamento, non collegare all'inverter moduli FV con possibili dispersioni di corrente. Ad esempio, i moduli FV messi a terra causeranno perdite di corrente sull'inverter. Quando si utilizzano moduli FV, assicurarsi che FV+ e FV- del pannello solare non siano collegati alla barra di terra del sistema.

È necessario utilizzare una scatola di giunzione FV con protezione da sovratensione. In caso contrario, si causeranno danni all'inverter in caso di fulmini sui moduli FV.

3.6.1 Selezione del modulo FV:

Quando si selezionano i moduli FV adeguati, assicurarsi di considerare i seguenti parametri:

- 1) La tensione a circuito aperto (Voc) dei moduli FV non può superare la tensione massima di Ingresso FV dell'inverter.
- 2) La tensione a circuito aperto (Voc) dei moduli FV deve essere superiore alla tensione di ingresso FV minima dell'inverter.
- 3) I moduli FV utilizzati per essere collegati a questo inverter devono essere certificati di Classe A secondo la norma IEC 61730.

Modello inverter	29.9kW	30kW	35kW	40kW	50kW
Tensione in ingresso FV	600V (180V-1000V)				
Intervallo di tensione MPPT del array fotovoltaico	150V-850V				
N. di tracker MPP	3 4		4		
N. di stringhe per tracker MPP		2+2+2		2+2-	+2+2

Grafico 3-5

3.6.2 Collegamento del cavo del modulo FV:

- 1. Spostare l'interruttore principale dell'alimentazione di rete (CA) su OFF.
- 2. Spostare l'isolatore CC su OFF.
- 3. Assemblare il connettore di ingresso FV all'inverter.

Suggerimento per la sicurezza:

Prima del collegamento, assicurarsi che la polarità dell'array FV corrisponda ai simboli "CC+" e "CC-".

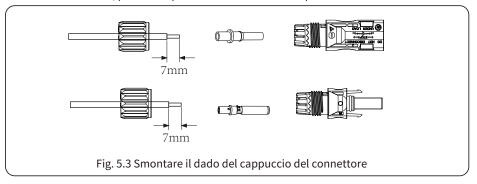
Suggerimento per la sicurezza:

Prima di collegare all'inverter, assicurarsi che la tensione a circuito aperto delle stringhe FV non abbia superato la tensione di ingresso FV massima dell'inverter.

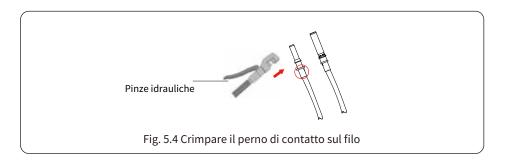
Fig. 5.1 Connettore CC+ maschio

Fig. 5.2 Connettore CC- femmina

Suggerimento per la sicurezza:


Utilizzare un cavo CC approvato per il sistema FV.

Tipo di cavo	Sezione trasversale (mm²)	
Tipo di Cavo	Intervallo	Valore consigliato
Cavo FV generico del settore (modello: PV1-F)	2.5-4 (12-10AWG)	2.5(12AWG)


Grafico 3-6

I passaggi per assemblare i connettori CC sono elencati di seguito:

a) Spelare l'isolamento del cavo FV di 7 mm, smontare il dado cieco del connettore, infilare un filo FV attraverso il dado cieco del connettore (vedere Fig. 5.3). Ripetere questa operazione con tutti i cavi FV, prestando particolare attenzione alla polarità del connettore.

b) Crimpare i terminali metallici con una pinza a crimpare come mostrato nella figura 5.4.

c) Inserire il perno di contatto nella parte superiore del connettore e serrare completamente il dado cieco nella parte superiore del connettore, come mostrato in Fig. 5.5.

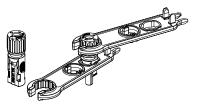


Fig. 5.5 connettore con dado cieco avvitato

d) Infine inserire il connettore CC negli ingressi positivo e negativo dell'inverter, come mostrato in figura 5.6.

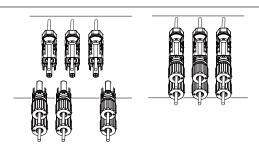
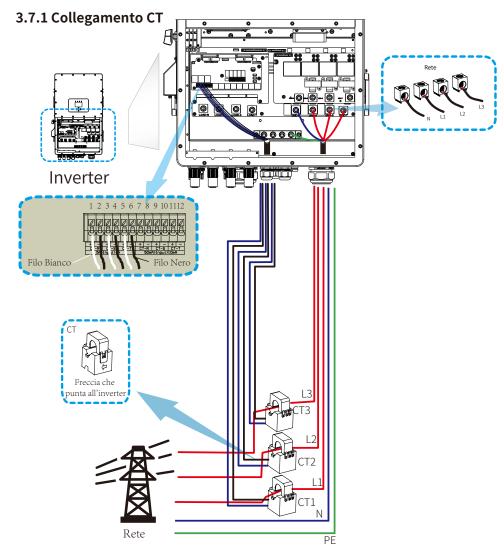


Fig. 5.6 Collegamento ingresso CC

Attenzione:

Quando si utilizzano le stringhe FV, tenere presente che l'esposizione alla luce solare può generare tensioni elevate nelle stringhe FV. Evitare il contatto con connettori o terminali elettrici esposti per evitare scosse elettriche o lesioni. Per motivi di sicurezza, è meglio far funzionare le stringhe FV di notte o quando i moduli FV non sono esposti alla luce solare. Se è necessario il funzionamento diurno, coprire i moduli fotovoltaici per ridurre al minimo l'esposizione alla luce solare e prevenire la generazione di alta tensione.

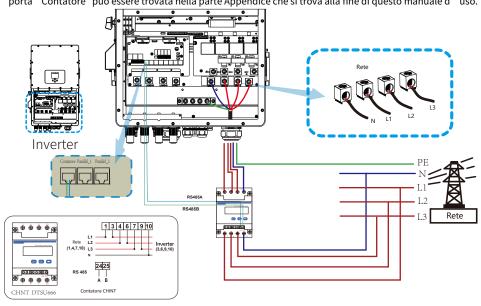
Ricordarsi di spegnere l'interruttore o l'interruttore CC prima di eseguire qualsiasi manutenzione o regolazione. Non spegnere l'interruttore CC o l'interruttore quando è presente alta tensione o corrente elevata per evitare danni o pericoli. Dare priorità alla sicurezza personale.

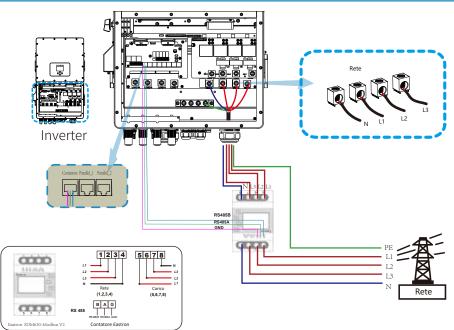


Attenzione:

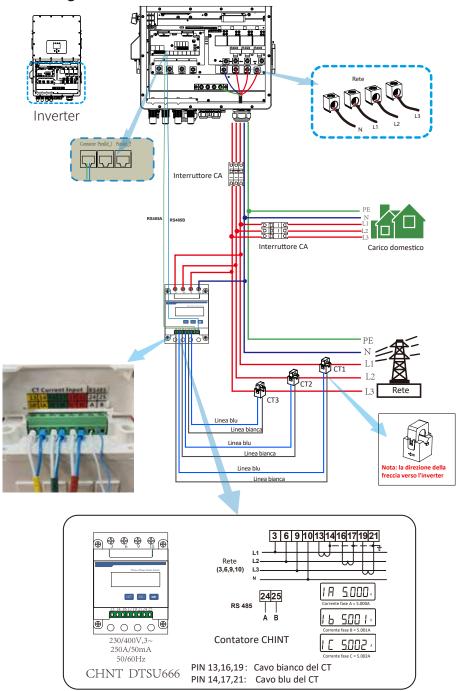
Utilizzare il proprio connettore di alimentazione CC dagli accessori dell'inverter. Non interconnettere connettori di produttori diversi. La corrente Isc dei moduli FV non deve superare la corrente Isc Max FV di questo modello di inverter. Se superata, potrebbe danneggiare l'inverter e non avere alcuna copertura dalla garanzia Deve.

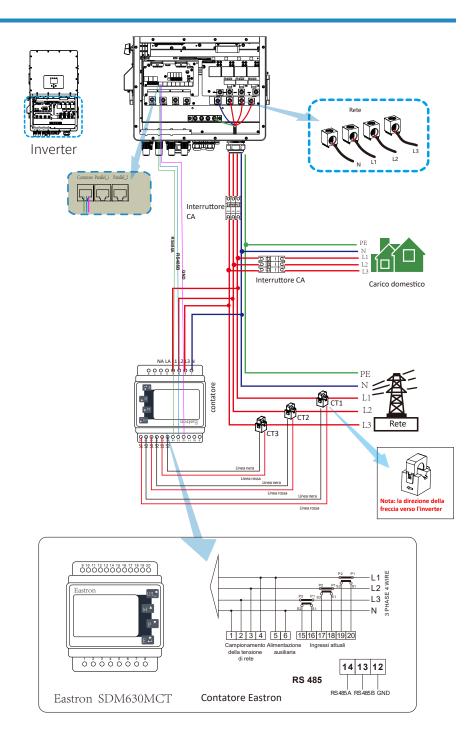
3.7 Installazione di contatori o CT

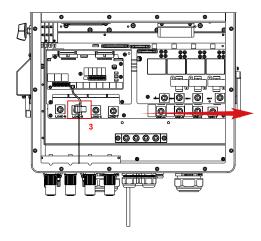

Sono disponibili tre metodi di installazione selezionabili per misurare il consumo energetico e garantire un'esportazione di energia pari a zero nella rete. Il metodo di installazione predefinito prevede l'utilizzo dei CT (300A/5A) forniti con nell'imballaggio. Quando la distanza tra la scatola di distribuzione CA e l'inverter ibrido supera i 10 metri, il che significa che la lunghezza del cavo del CT deve superare i 10 metri, si consiglia di utilizzare un contatore intelligente invece di tre CT. Inoltre, in un sistema in parallelo, se la corrente da misurare è maggiore di 100 A, è necessario sostituire anche i tre CT predefiniti con contatori intelligenti o CT più grandi. Contattare l'Assistenza Deye per confermare quale specifica di CT o contatore intelligente utilizzare.



^{*}Nota: quando si prende l'alimentazione dalla rete pubblica, se la potenza di rete visualizzata sullo schermo LCD è effettivamente negativa, regolare la direzione di installazione del CT.


3.7.2 Collegamento del contatore senza CT


Esistono due tipi di contatori intelligenti, uno è il contatore intelligente passante e l'altro è il contatore intelligente a induttanza reciproca con CT. I marchi di contatori intelligenti a cui sono stati abbinati gli inverter Deye includono CHINT e Eastron. I modelli consigliati qui non sono tutti modelli compatibili, si consiglia di acquistare il contatore intelligente dai distributori autorizzati di Deye, altrimenti potrebbe non essere possibile utilizzarlo a causa di mancata corrispondenza della comunicazione. La definizione della porta "'Contatore" può essere trovata nella parte Appendice che si trova alla fine di questo manuale d'uso.



3.7.3 Collegamento contatore con CT

Collegamento del contatore

3.8 Collegamento a terra (obbligatorio)

Il cavo di terra deve essere collegato alla piastra di terra sul lato della rete per evitare scosse elettriche in caso di guasto del conduttore di protezione originale.

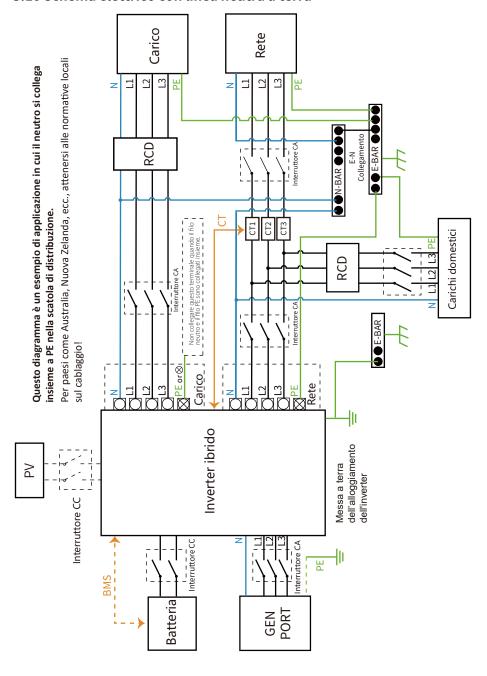
Collegamento a terra (fili in rame) (bypass)

Modello	Dimensione del filo	Sezione del cavo(mm²)	Valore di coppia (max)
29.9/30/35/40/50kW	0AWG	50	28.2Nm

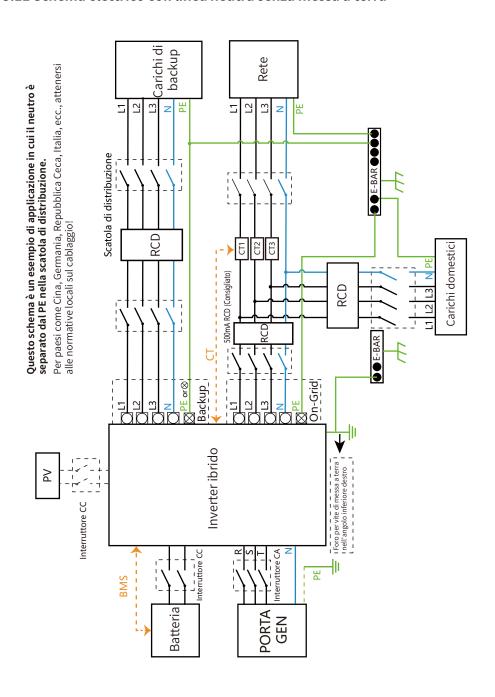
Collegamento a terra (fili in rame)

Modello	Dimensione del filo	Sezione del cavo(mm²)	Valore di coppia (max)
29.9/30/35kW	4AWG	16	12.4Nm
40kW	2AWG	25	12.4Nm
50kW	1AWG	35	16.9Nm

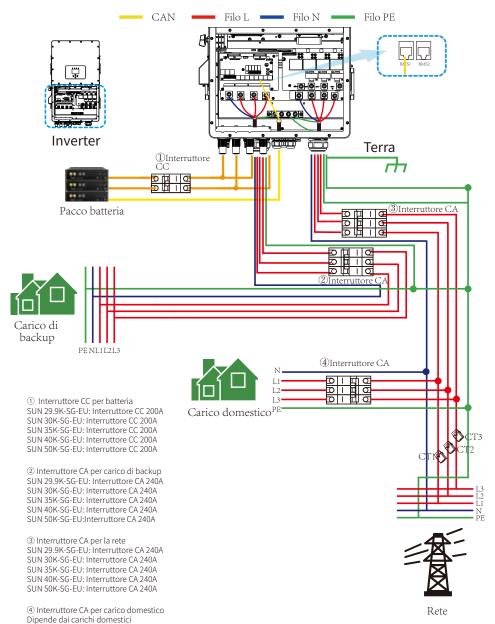
Il conduttore deve essere realizzato dello stesso metallo dei conduttori di fase.

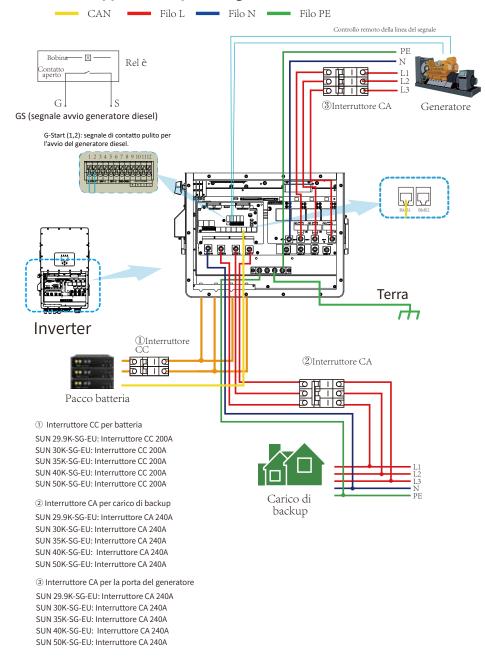

Attenzione:

L'inverter è dotato di un circuito di rilevamento della corrente di dispersione integrato. L'RCD di tipo A può essere collegato all'inverter per la protezione secondo le leggi e i regolamenti locali. Se è collegato un dispositivo di protezione della corrente di dispersione esterno, la sua corrente operativa deve essere pari a 10 mA/KVA o superiore, per questa serie di inverter dovrebbe essere di 500 mA o superiore, altrimenti l'inverter potrebbe non funzionare correttamente.


3.9 Collegamento del Datalogger

Per la configurazione del datalogger, fare riferimento al manuale d'uso del datalogger. La presa Wi-Fi non è l'unica opzione. Se il luogo di installazione non dispone di segnale Wi-Fi o il segnale è debole, è possibile anche scegliere un registratore di dati che comunichi tramite altre interfacce.


3.10 Schema elettrico con linea neutra a terra


3.11 Schema elettrico con linea neutra senza messa a terra

3.12 Schema applicativo tipico del sistema On-Grid

3.13 Schema applicativo tipico del generatore diesel

3.14 Schema di collegamento in parallelo trifaseNota: Per il sistema parallelo, la batteria al piombo e la modalità "No Bat" 'non sono supportate.
Tutti gli inverter collegati in parallelo devono essere dello stesso modello. Utilizzare una batteria al litio inclusa nell'elenco delle batterie approvate da Deye.
Orni inverte de prebbi appro il prespine set di batterio congreto. nell'elenco delle batterie approvate da peye. Ogni inverter dovrebbe avere il proprio set di batterie separato. CAN Filo Filo PE Nota: selezionare la modalità "Esportazione zero in CT" per il sistema parallelo. Inverter N.3 (slave) Nota: le porte parallele inattive del primo e dell'ultimo inverter devono essere collegate con resistenze adegu Terra (1) $\overline{}$ Pacco batteria Inverter Inverter (5 N.2 (slave) Terra 468 Interruttore CA per la porta (2) $\overline{}$ della rete SUN 29.9K-SG-EU: Interruttore CA 240A SUN 30K-SG-EU: Interruttore CA 240A SUN 35K-SG-EU: Interruttore CA 240A SUN 40K-SG-EU: Interruttore CA 240A Pacco batteria SUN 50K-SG-EU: Interruttore CA 240A ⑤⑦⑨ Interruttore CA per carico di backup SUN 29.9K-SG-EU: Interruttore CA 240A SUN 30K-SG-EU: Interruttore CA 240A SUN 35K-SG-EU: Interruttore CA 240A SUN 40K-SG-EU: Interruttore CA 240A Inverter SUN 50K-SG-EU: Interruttore CA 240A N.1 123 Interruttore CC per batteria (principale) SUN 29.9K-SG-EU: Interruttore CC 200A SUN 30K-SG-EU: Interruttore CC 200A SUN 35K-SG-EU: Interruttore CC 200A SUN 40K-SG-EU: Interruttore CC 200A SUN 50K-SG-EU: Interruttore CC 200A (3) 10 Interruttore CA per carico domesticoDipende dai carichi domestici Pacco batteria Carico di backup $\bigcirc \square \square \square$ Carico domestico Assicurarsi che gli interruttori DIP di Freccia che punta ogni inverter ibrido nel sistema parallelo siano impostati su OFF all'inverter Inverter slave Inverter principale Inverter slave V P 1

Rete

4. FUNZIONAMENTO

4.1 Accensione/Spegnimento

Una volta che il sistéma è stato installato correttamente e la batteria è collegata all'inverter, seguire i passaggi seguenti per accendere l'inverter:

1. Accendere tutti gli interruttori del sistema.

2. Accendere l'interruttore CC dell'inverter e il pulsante di accensione della batteria (se nel sistema è installata una batteria), indipendentemente dall'ordine.

3. Premere il pulsante ON/'FF (situato sul lato sinistro della custodia dell'inverter) per accendere l'inverter

Quando un sistema connesso al fotovoltaico o alla rete (senza batteria) è acceso. il display LCD sarà ancora illuminato visualizzando "OFF". in questa situazione, dopo aver acceso il pulsante ON/OFF, selezionare "NO batt" nelle impostazioni dell'inverter per far funzionare il sistema. Quando si spegne l'inverter, attenersi alla seguente procedura:

1. Spegnere gli interruttori CA sulla porta di rete, sulla porta di carico e sulla porta GEN.

2. Premere il pulsante ON/OFF dell'inverter ibrido e spegnere l'interruttore CC sul lato batteria, quindi spegnere il pulsante di accensione della batteria.

3. Spegnere l'interruttore CC dell'inverter.

4.2 Funzionamento e pannello di visualizzazione

Il pannello operativo e di visualizzazione, mostrato nella tabella seguente, si trova sul pannello anteriore dell'inverter. Comprende quattro indicatori, quattro tasti funzione e un display LCD, che indica lo stato operativo e le informazioni sulla potenza di ingresso/uscita.

	Spia LED	Messaggi
СС	Led verde luce fissa	Connessione FV normale
CA	Led verde luce fissa	Connessione alla rete normale
Normale	Led verde luce fissa	L'inverter funziona normalmente
Allarme	Led rosso a luce fissa	Malfunzionamento o avviso

Grafico 4-1 Spie LED

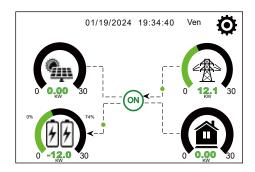
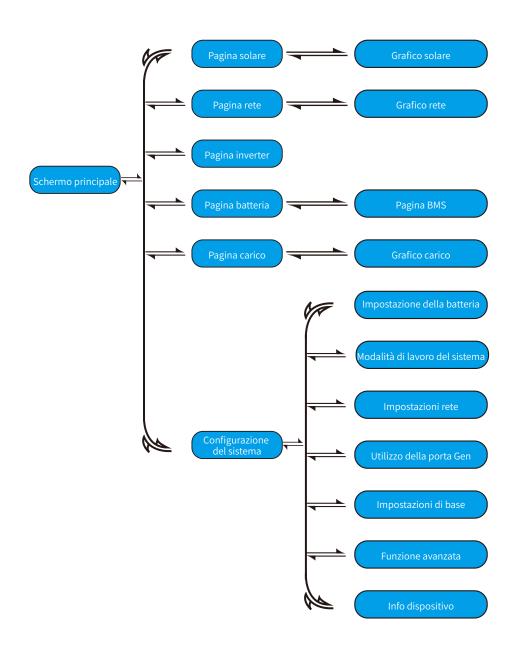

Tasto funzione	Descrizione
Esc	Per uscire dalla modalità di impostazione
Su	Per tornare alla selezione precedente
Giù	Per passare alla selezione successiva
Invio	Per confermare la selezione

Grafico 4-2 Pulsanti funzione

5. Icone del display LCD

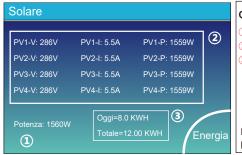
5.1 Schermata principale

Il display LCD è touchscreen, lo schermo sottostante mostra le informazioni generali dell'inverter.



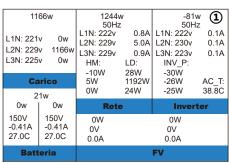
- 1.L'icona al centro dello schermo indica se il sistema sta funzionando normalmente o meno, visualizzando "ON" per lo stato normale o visualizzando un codice come "Comm./F01-F64" per errori di comunicazione o altri errori. Fare riferimento all'elenco dei codici errore di allarmi ed errori nel capitolo 8 per trovare soluzioni all'errore.
- 2. In alto al centro dello schermo si trovano la data e l'ora locale che devono essere impostate durante la messa in servizio.
- 3. Icona Configurazione del Sistema. Premere questo pulsante di impostazione per accedere alla schermata di configurazione del sistema che include Impostazioni di base, Impostazioni batteria, Impostazioni rete, Modalità di lavoro del sistema, Utilizzo della porta del generatore, Funzioni avanzate e Informazioni sul dispositivo.
- 4.La schermata principale include le icone per il fotovoltaico (in alto a sinistra), la rete (in alto a destra), il carico (in basso a destra) e la batteria (in basso a sinistra). visualizza anche la direzione del flusso di energia spostando i punti. Quando la potenza si avvicina a un livello elevato, il colore sui pannelli cambierà da verde a rosso, mostrando in modo vivido lo stato del sistema sulla schermata principale.

Alcuni chiarimenti sullo stato del sistema sono i seguenti:


- -La potenza FV sarà sempre positiva.
- -Nel sistema a inverter singolo, la potenza del carico sarà sempre positiva. in un sistema parallelo, la potenza del carico può essere negativa, il che significa che gli altri inverter alimentano questo inverter attraverso la porta di carico.
- -Una potenza di rete negativa significa che l'energia viene esportata nella rete (venduta), mentre una potenza positiva significa che l'energia viene importata dalla rete (acquistata).
- -Una potenza negativa della batteria significa carica, se positiva significa scarica.

5.1.1 Diagramma di flusso operativo del display LCD

5.2 Pagine in dettaglio


Facendo clic sulle icone sulla schermata principale del display LCD è possibile accedere alle pagine dei dettagli di "Solare", "Inverter", "Carico", "Rete" e "Batt".

Questa è la pagina dei dettagli del pannello solare.

- 1 Generazione dei pannelli solari.
- Tensione, Corrente, Potenza per ogni MPPT.
- 3 Energia del pannello solare per giorno e totale.

Premere il pulsante "Energia" per accedere alla pagina della curva di potenza.

Questa è la pagina dei dettagli dell'inverter.

Modulo inverter CC/CA
 Tensione, Corrente, Potenza per ciascuna Fase.
 AC-T: Temperatura vicino al modulo inverter
 CC/CA.

Questa è la pagina dei dettagli del Carico.

- Potenza del Carico.
- Tensione, potenza per ciascuna fase.
- 3 Consumo di Carico giornaliero e totale.

Quando si seleziona "Vendere prima" o "Esportazione zero su Carico" nella pagina della modalità di lavoro del sistema, le informazioni in questa pagina riguardano il carico di backup che si collega alla porta di carico dell'inverter ibrido.

Quando si seleziona "Esportazione zero a CT" nella pagina della modalità di lavoro del sistema, le informazioni in questa pagina includono il carico di backup e il carico domestico.

Premere il pulsante "Energia" per accedere alla pagina della curva di potenza.

Questa è la pagina dei dettagli della rete.

- Stato, potenza, frequenza.
- L: Tensione per ciascuna fase
 CT: Potenza rilevata dai sensori di corrente
 esterni

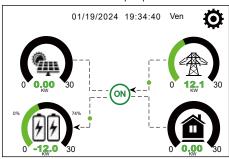
LD: Potenza rilevata utilizzando sensori interni sull'interruttore di ingresso/uscita della rete CA

3 BUY: Energia dalla rete all'inverter, SELL: Energia dall'inverter alla rete.

Premere il pulsante "Energia" per accedere alla pagina della curva di potenza

Questa è la pagina dei dettagli della batteria.

PAGINA DETTAGLI BATTERIA


Fare clic sul pulsante "Li-BMS" nell'angolo in basso a destra della pagina dei dettagli della batteria per accedere alla pagina BMS.

Li-BMS LiBms1: Deye-HV Tensione batteria: 629.5 V Capacità batteria: 100 AH Corrente batteria: 0.0 A Tensione carica batteria: 691.2 V Temp batteria: 27.0 °C Limite corrente carica: 100 A SOC :46% SOH :100% SW batteria: 0x1004 Allarmi: 0x8000 0x0000 HW batteria: 0x3001 Richiesta di carica forzata Li-BMS LiBms2: Non corrispondente Tensione batteria: 0.0 V Capacità batteria: 0 AH Corrente batteria: 0.0 A Temp batteria: -100.0 C Limite corrente carica: 0 A SOC: 0% Limite corrente carica: 0 A Allarmi: 0x0000 0x0000

Premere il pulsante "Giù", è possibile accedere alla pagina dei dettagli LiBms2

5.3 Pagina Curva-Solare e Carico e Rete

Nella schermata principale del display LCD, facendo clic sulle icone "Solare", "Rete" e "Carico", è possibile accedere alle pagine di dettaglio dell'energia solare, dell'energia della rete e del consumo del carico. Facendo clic sul pulsante "Energia" nell'angolo in basso a destra di queste pagine di dettaglio, è possibile accedere alla pagina della curva. Utilizzando il fotovoltaico come esempio per l'illustrazione di seguito.

La curva dell'energia solare giornaliera, mensile, annuale e totale può essere controllata approssimativamente sul display LCD, per una generazione di energia più precisa, controllare il sistema di monitoraggio. Fare clic sui pulsanti su e giù sotto lo schermo LCD per visualizzare le curve di potenza di diversi periodi di tempo. L'operazione di controllo della potenza della rete e della potenza del carico è simile all'operazione precedente.

5.4 Menù di configurazione del sistema

Questa è la pagina di Configurazione del Sistema.

5.5 Menù di configurazione di base



Sincronizzazioni temporali: Abilitare l'inverter a sincronizzare automaticamente l'ora della piattaforma cloud. Beep: Utilizzato per attivare o disattivare il segnale acustico nello stato di allarme dell'inverter.

Oscuramento automatico: Utilizzato per regolare automaticamente la luminosità dello schermo LCD.

Ripristino alle impostazioni di fabbrica: Resettare tutti i parametri dell'inverter.

Blocca tutte le modifiche: Blocca i parametri programmabili per impedirne la modifica.

Quando selezioniamo "ripristino alle impostazioni di fabbrica" o "Blocca tutte le modifiche" il sistema ci richiederà prima di inserire una password per confermare l'operazione.

Password di ripristino alle impostazioni di fabbrica: 9999

Password per blocca tutte le modifiche: 7777

- 1.Fare clic sulla freccia giù sul lato sinistro della pagina "Impostazioni di base 1" per accedere alla pagina "Impostazioni di base 2";
- 2. Nella pagina "Impostazioni di base 2", è possibile impostare la lingua di visualizzazione dello schermo LCD secondo necessità. Fare clic sui pulsanti "UP" e "DOWN" sotto lo schermo LCD per cambiare le opzioni della lingua. Le opzioni attualmente disponibili sono: inglese, tedesco, polacco, ungherese, spagnolo, ceco, ucraino. 3. Dopo aver scelto la lingua desiderata, fare clic sull'icona del segno di spunta nell'angolo in basso a destra della pagina per salvare le impostazioni. Nota: Se lo schermo LCD corrente non dispone di una pagina Impostazioni di base 2 o se l'opzione lingua nella pagina Impostazioni di base 2 non include la lingua che è necessario impostare, contattare il team di supporto post-vendita per aggiornare il firmware HMI e il pacchetto firmware lingua del inverter. Una volta completato l'aggiornamento, seguire i passaggi precedenti per completare la configurazione.

5.6 Menù di configurazione della batteria

Capacità della batteria: Riservato.

Usa Batt V: Utilizza la tensione della batteria per tutte le impostazioni relative alla batteria.

Max A carica/scarica: Corrente massima di carica/scarica della batteria (0-50 A per il modello 29.9/30/35/40/50

Per AGM e Flooded, consigliamo batterie Ah x20% = Ampere di carica/scarica.

. Per il litio, consigliamo batterie Ah x50%=Ampere di carica/scarica.

. Per il gel, seguire le istruzioni del produttore.

No Batt: spuntare questa voce se al sistema non è collegata alcuna batteria.

Bat1 e bat2 paralleli: Se un set di batterie è collegato contemporaneamente sia a BAT1 che a BAT2, questa funzione deve essere abilitata.

Forza Gen: Ouando il generatore è collegato, è costretto ad avviare il generatore senza soddisfare altre condizioni.

Configurazione della batteria 30% 30% Avvio Imp Batt2 50A 50A Carica rete (2) Carica Gen Segnale Gen Segnale rete 24.0 ore 0.0 ore

Questo il è Carico di Rete, devi selezionare.

Avvio =30%: Ouando il SOC della batteria o la tensione scendono al valore impostato. l'inverter avvierà automaticamente il generatore collegato alla porta della rete per caricare la batteria.

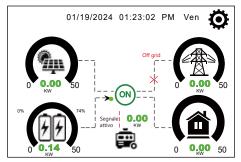
= 50A: corrente di carica massima quando si utilizza solo la potenza alimentata dalla porta di rete dell'inverter come fonte di alimentazione, il che significa utilizzare la potenza della rete o la potenza del generatore collegato alla porta di rete.

Carico di rete: È consentito utilizzare l'energia fornita dalla porta di rete, che include la rete o il generatore collegato alla porta di rete, per caricare la batteria.

Segnale di rete: Quando un generatore è collegato alla porta di rete dell'inverter ibrido. questo "segnale di rete" può essere utilizzato per controllare il contatto pulito per avviare o arrestare il generatore.

Questa è la pagina di configurazione della batteria. (1)3

Avvio =30%: La percentuale di SOC al 30% del sistema avvierà automaticamente un generatore collegato per caricare il banco batterie.


= 50A: La corrente di carica massima che il generatore può supportare.

Carico Gen: Utilizza la potenza del generatore diesel per caricare la batteria.

Segnale Gen: Il relè normalmente aperto si chiuderà quando il SOC della batteria o la tensione scendono al valore impostato di "Avvio".

Tempo di esecuzione max Gen: Indica il tempo massimo di funzionamento del generatore in un giorno, allo scadere del tempo il generatore verrà spento. 24H significa che non si spegne continuamente.

Tempo di inattività Gen: Indica il tempo di ritardo dello spegnimento del generatore dopo aver raggiunto il tempo di funzionamento.

Quando il "segnale GEN" è attivo, l'icona del generatore apparirà sulla schermata principale del display LCD dell'inverter.

Generatore	
Potenza: 6000W	Oggi=10 KWH Totale =10 KWH
V_L1: 230V V_L2: 230V V_L3: 230V	P_L1: 2KW P_L2: 2KW P_L3: 2KW

Facendo clic sull'icona del generatore nella schermata principale, è possibile accedere alla pagina dei dettagli del generatore. Le informazioni contenute in questa pagina sono le seguenti:

- (1) Quanta energia viene utilizzata dal generatore;
- (2) Quanta energia è stata utilizzata dal generatore oggi o in
- (3) La tensione di uscita e la potenza su ciascuna fase del generatore.

Configurazione della batteria Modalità litio 00 Spegnimento 10% Batt scarica 20% Riavvio 40%

Quando è selezionata la modalità "Litio", il contenuto della pagina " Impostazioni Batteria 3 " è mostrato nella figura a sinistra.

Modalità litio: Questo è il codice del protocollo di comunicazione BMS che può essere confermato nell'"Elenco batterie approvate Deye" in base al modello di batteria in uso.

Spegnimento: Valido in modalità Off-Ggrid, la batteria può scaricarsi su questo SOC, quindi il modulo inverter CC/CA di questo inverter verrà spento e l'energia solare potrà essere utilizzata solo per caricare la batteria.

Batteria scarica: Valido in modalità On-Grid, quando il "Carico di Rete" è

stato controllato e il SOC della batteria target impostato nella pagina "Tempo di utilizzo" non è inferiore al valore "Batt Scarica", il SOC della batteria rimarrà al di sopra del valore di "Batteria scarica".

Riavvio: Valido in modalità Off-Grid, dopo che il modulo inverter CC/CA di questo inverter è stato spento, l'energia fotovoltaica può essere utilizzata solo per caricare la batteria. Dopo che il SOC della batteria è tornato a questo valore di "Riavvio", il modulo inverter CC/CA si riavvierà per fornire alimentazione CA.

Configurazione della batteria Float V 536V Spegnimento 450V Batt scarica 470V Riavvio 500V

Quando è selezionata la modalità "Utilizza Batt V", il contenuto della pagina "Impostazioni Batt 3" è mostrato nella figura a sinistra. Voltaggio galleggiante: Tensione di carica completa della batteria. Spegnimento: Valido in modalità Off-Grid, la batteria può scaricarsi a questa tensione, quindi il modulo inverter CC/CA di questo inverter verrà spento e l'energia solare potrà essere utilizzata solo per caricare la batteria.

Batteria scarica: Valido in modalità On-Grid, quando il "Carico di rete" è stata controllata e la tensione della batteria target impostata nella pagina "Tempo di utilizzo" non è inferiore al valore "Batt Scarica", la tensione della batteria rimarrà al di sopra del valore di "Batt scarica". Riavvio: Valido in modalità Off-Grid, dopo che il modulo inverter CC/CA di questo inverter è stato spento, l'energia FV può essere utilizzata solo per caricare la batteria. Dopo che la tensione della batteria è tornata al valore di "Riavvio", il modulo inverter CC/CA si riavvierà per fornire alimentazione CA.

Impostazioni per la batteria consigliate

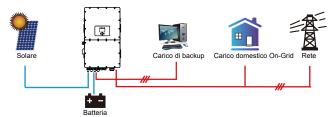
Tipo di batteria	Fase di assorbimento	Fase galleggiante	Valore della coppia (ogni 30 giorni 3 ore)
Litio	Seguire i parametri di tensione del BMS		del BMS

5.7 Menu di configurazione della modalità di lavoro del sistema

Modalità di Lavoro

Vendere prima: Questa modalità consente all'inverter ibrido di rivendere alla rete l'eventuale energia in eccesso prodotta dai pannelli solari. Se il tempo di utilizzo è attivo, l'energia della batteria può anche essere venduta alla rete.

L'energia FV verrà utilizzata per alimentare il carico e caricare la batteria, quindi l'energia in eccesso verrà immessa nella rete. La priorità della fonte di alimentazione per il carico è la seguente:


1. Pannelli solari.

2. Batterie (quando il SOC effettivo della batteria è superiore al SOC target).

3. Rete.

Potenza solare max: potenza massima consentita in ingresso CC.

Esportazione zero a Carico: L'inverter ibrido fornirà energia solo al carico di backup collegato. L'inverter ibrido non fornirà energia al carico domestico né venderà energia alla rete, se la "vendita solare" non è abilitata in background. Il CT integrato rileverà la potenza che ritorna alla rete e ridurrà la potenza dell'inverter solo per alimentare il carico locale e caricare la batteria. Consumo del carico=Carico di backup.

Esportazione zero a CT: L'inverter ibrido non solo fornirà energia al carico di backup collegato, ma fornirà energia anche al carico domestico collegato. Se l'energia FV e la potenza della batteria sono insufficienti, utilizzerà l'energia della rete come supplemento. L'inverter ibrido non venderà energia alla rete, se la "vendita solare" non è abilitata. In questa modalità, devono essere installati CT esterni o contatori intelligenti, Per il metodo di installazione dei CT o del contatore intelligente, fare riferimento alla sezione 3.7. I CT esterni o il contatore intelligente rileveranno il flusso di potenza che ritorna alla rete e ridurranno la potenza dell'inverter solo per alimentare il carico di backup, il carico domestico e caricare la batteria. Consumo di carico=Carico di backup+carico domestico.

Vendita solare: "Vendita solare" significa Esportazione zero a Carico o Esportazione zero a CT: quando questa voce è attiva, l'energia in eccesso può essere rivenduta alla rete. Quando è attivo, l'energia generata dall' array FV alimenterà prima i carichi o caricherà la batteria, per poi essere esportata nella rete.

Potenza di vendita max: Consentito il flusso massimo della potenza in uscita verso la rete.

Potenza a esportazione zero: Questo parametro garantirà l'esportazione zero prelevando dalla rete una piccola quantità di energia che è stata impostata con questo valore. Si consiglia di impostarlo su 20-100 W per garantire che l'inverter ibrido non fornisca energia alla rete.

Modello energetico: Priorità di utilizzo dell'energia FV. Quando "Carico di rete" è abilitato, il modello energetico

predefinito è "Carico prima", questa impostazione non sarà valida. **Batt prima:** L'energia FV viene inizialmente utilizzata per caricare la batteria, mentre l'energia in eccesso verrà utilizzata per alimentare il carico. Se l'energia FV è insufficiente, la rete fornirà un supplemento per la batteria e il carico contemporaneamente.

Carico prima: L'energia FV viene prima utilizzata per alimentare il carico, mentre l'energia in eccesso verrà utilizzata per caricare la batteria. Se la potenza FV è insufficiente, la rete fornirà energia al carico.

Peak-Shaving di Rete: quando è attivo, la potenza in uscita dalla rete sarà limitata entro il valore impostato. Se la potenza peak-shaving di rete più l'energia FV più l'energia della batteria non riesce a soddisfare il consumo energetico del carico dopo il peak-shaving, il peak-shaving della rete non sarà valido e la potenza prelevata dalla rete può superare questo valore impostato.

Carico Tempo di utilizzo Gen di rete Tempo Potenza Batt 05:00 32000 00:00 80% avoro2 05:00 08:00 32000 40% 08:00 10:00 32000 40% 10:00 15:00 32000 80%

18:00 32000

00:00

32000

40%

35%

Modaliatà di lavoro del sistema

15:00

18:00

Tempo di utilizzo: serve per programmare quando utilizzare la rete o il generatore per caricare la batteria e quando scaricare la batteria per alimentare il carico. Selezionare solo "Tempo di utilizzo" e gli elementi successivi (rete, carica, tempo, potenza, ecc.) avranno effetto.

Note: quando si utilizza la modalità Vendere prima e si fa clic sul tempo di utilizzo, l'energia della batteria può essere venduta in rete.

Carico di rete: utilizza la rete per caricare la batteria nel periodo di

tempo selezionato.

Carico Gen: utilizza il generatore diesel per caricare la batteria in un certo periodo di tempo.

Orario: tempo reale, dalle 0:00 alle 0:00 del giorno successivo.

Nota: Per un utilizzo più flessibile e controllabile delle batterie, si consiglia di abilitare la funzione "Tempo di utilizzo". Quando l'inverter funziona in modalità On-Grid e "Tempo di utilizzo" non è abilitato, l'inverter può caricarsi normalmente, ma solo scarica per fornire la potenza di autoconsumo dell'inverter, senza scarica per alimentare i carichi.

Potenza: potenza max di scarica della batteria consentita.

Batt (V o SOC%): Il valore target della tensione della batteria o del SOC durante il periodo di tempo corrente. Se il SOC o la tensione effettiva della batteria è inferiore al valore target, la batteria deve essere caricata. Se è presente una fonte di energia come l'energia solare o la rete, la batteria verrà caricata; se il SOC o la tensione effettiva della batteria è superiore al valore target, la batteria può scaricarsi e quando l'energia solare non è sufficiente per alimentare il carico o è abilitata la funzione "Vendere prima", la batteria si scaricherà. not enough to power the load or the "Selling First "is enabled, the battery will discharge.

Supponendo che alla fine del periodo di tempo precedente, il livello effettivo della batteria raggiunga o si avvicini al valore target del periodo di tempo precedente.

Per esempio:

Dalle 00:00 alle 05:00,

se il SOC della batteria è inferiore all'80%, utilizzerà la rete per caricare la batteria finché il SOC della batteria non raggiunge l'80%. Dalle 05:00 alle 08:00,

se il SOC della batteria è superiore al 40%, l'inverter ibrido scaricherà la batteria finché il SOC non raggiunge il 40%. Allo stesso tempo, se il SOC della batteria è inferiore al 40%, la rete caricherà il SOC della batteria al 40%.

Dalle 08:00 alle 10:00,

se il SOC della batteria è superiore al 40%, l'inverter ibrido scaricherà la batteria finché il SOC non raggiunge il 40%.

Dalle 10:00 alle 15:00,

quando il SOC della batteria è superiore all'80%, l'inverter ibrido scaricherà la batteria finché il SOC non raggiunge l'80%. Se l'energia fotovoltaica è sufficiente, la batteria può essere caricata al 100%. Dalle 18:00,

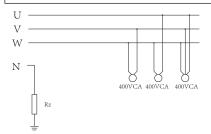
quando il SOC della batteria è superiore al 40%, l'inverter ibrido scaricherà la batteria finché il SOC non raggiunge il 40%.

Dalle 18:00 alle 00:00,

quando il SOC della batteria è superiore al 35%, l'inverter ibrido scaricherà la batteria finché il SOC non raggiunge il 35%.

Consente agli utenti di scegliere in quale giorno eseguire l'impostazione del "Tempo di utilizzo". Ad esempio, l'inverter eseguirà la pagina dell'orario di utilizzo solo nei giorni lunedi/martedi/mercoledi/giovedi/venerdi/sabato.

5.8 Menù configurazione di rete



Modalità rete:

General Standard、UL1741 & IEEE1547、CPUC RULE21、
SRD-UL-1741、CEI_0_21_Internal、EN50549_CZ-PPDS(>16A)、
Australia_A、Australia_B、Australia_C、AS4777_NewZealand、
VDE4105、OVE-Directive R25、EN50549_CZ_PPDS_L16A、
NRS097、G98、G99、EN50549_1_Norway_133V、
EN50549_1_Norway_230V、Japan_200VAC_3P3W、
CEI_0_21_External、CEI_0_21_Areti、Japan_400VAC_3P3W、
Japan_415VAC_3P4W、EN50549_1_Switzerland.
Seguire il codice di rete locale e quindi scegliere lo standard di rete corrispondente.
Livello di rete: sono disponibili diversi (ivelli di tensione per la

Livello di rete: sono disponibili diversi livelli di tensione per la tensione di uscita dell'inverter quando è in modalità Off-Grid. LN:220 V/LL:380 V(CA), LN:230 V/LL:400 V(CA)

Sistema IT: Se il sistema di rete è un sistema IT, abilitare questa opzione. Tutte le linee attive del sistema IT sono isolate da terra e il punto neutro del sistema IT è messo a terra tramite alta impedenza o non messo a terra (come mostrato nella figura seguente).

Rz: Resistenza di terra di grande resistenza. Oppure il sistema non ha una linea Neutra

Configurazione della rete/Connessione Connessione normale Intervallo normale Ramp 10s 51.50Hz Bassa frequenza 48.00Hz Alta frequenza Imp Bassa tensione 185.0V 265.0V Rete2 Alta tensione 36s Alta frequenza 48.20Hz 51.30Hz Bassa tensione 187.0V 263.0V 1.000 60s

Connessione normale: L'intervallo di tensione/frequenza di rete consentito quando l'inverter funziona normalmente.

Tasso normale Ramp: È il Ramp di potenza di avvio.

Riconnettiti dopo il viaggio: L'intervallo di tensione/frequenza di rete consentito per l'inverter connette la rete dopo lo sgancio dell'inverter dalla rete.

Tasso di Ramp di riconnessione: è il Ramp della potenza di riconnessione.

Tempo di riconnessione: Il tempo di attesa affinché l'inverter si colleghi nuovamente alla rete dopo lo sgancio.

PF: Fattore di potenza, che è il rapporto tra potenza attiva e potenza apparente nei circuiti CA e può essere utilizzato per regolare la potenza attiva in uscita e la potenza reattiva dell'inverter.

- HV1: Punto di protezione da sovratensione di livello 1;
 HV2: Punto di protezione da sovratensione di livello 2;
 HV3: Punto di protezione da sovratensione di livello 3

 0.10 s: tempo di viaggio.
 - LV1:Punto di protezione da sottotensione di livello 1;
 - LV2: Punto di protezione da sottotensione di livello 2;
 - LV3: Punto di protezione da sottotensione di livello 3;
 - **HF1:** Punto di protezione da sovrafreguenza di livello 1;
 - **HF2:** Punto di protezione da sovrafrequenza di livello 2; **HF3:** Punto di protezione da sovrafrequenza di livello 3;
 - **LF1:** Punto di protezione della frequenza di livello 1;
 - **LF2:** Punto di protezione della frequenza di livello 1; **LF2:** Punto di protezione della frequenza di livello 2;
 - **LF3:** Punto di protezione della frequenza di livello 3;
- 42 -

F(W): Viene utilizzato per regolare la potenza attiva in uscita dell'inverter in base alla frequenza di rete.

Droop F: percentuale della potenza nominale per Hz Ad esempio, "Avvio freq f>50.2Hz, Stop freq f<51.5, Droop F=40%PE/Hz" quando la frequenza di rete raggiunge 51.2Hz, l'inverter diminuirà la sua potenza attiva a Droop F del 40%. Quando la frequenza del sistema di rete è inferiore a 50.1 Hz, l'inverter smetterà di diminuire la potenza in uscita.

Per i valori di configurazione dettagliati, seguire il codice di rete locale.

V(W): Permette di regolare la potenza attiva dell'inverter in base alla tensione di rete impostata.

V(Q): Serve per regolare la potenza reattiva dell'inverter in base alla tensione di rete impostata.

Queste due funzioni vengono utilizzate per regolare la potenza in uscita dell'inverter (potenza attiva e potenza reattiva) al variare della tensione di rete.

Lock-in/Pn 5%: Quando la potenza attiva dell'inverter è inferiore al 5% della potenza nominale, la modalità V(Q) non avrà effetto.

Lock-out/Pn 20%: Se la potenza attiva dell'inverter aumenta dal 5% al 20% della potenza nominale, la modalità V(Q) avrà nuovamente effetto.

Per esempio: V2=110%, P2=80%. Quando la tensione di rete raggiunge il 110% della tensione di rete nominale, la potenza di uscita dell'inverter ridurrà la potenza di uscita attiva all'80% della potenza nominale.

Per esempio: V1=94%, Q1=44%. Quando la tensione di rete raggiunge il 94% della tensione di rete nominale, la potenza in uscita dell'inverter produrrà il 44% della potenza in uscita reattiva.

Per i valori di configurazione dettagliati, seguire il codice di rete locale.

P(Q): Serve per regolare la potenza reattiva dell'inverter in base alla potenza attiva impostata.

P(PF): Serve per regolare il PF dell'inverter in base alla potenza attiva impostata.

Per i valori di configurazione dettagliati, seguire il codice di rete locale.

Lock-in/Pn 50%: Quando la potenza attiva in uscita è inferiore al 50% della potenza nominale dell'inverter, non entrerà nella modalità P(PF).

Lock-out/Pn 50%: Quando la potenza attiva in uscita dall'inverter è superiore al 50% della potenza nominale, entrerà nella modalità P(PF).

Nota: solo quando la tensione di rete è pari o superiore a 1.05 volte la tensione di rete nominale, avrà effetto la modalità P(PF).



Riservato: Questa funzione è riservata e non è consigliata.

5.9 Porta del generatore - Utilizzare il menu di configurazione

Potenza nominale assorbita dal generatore: max potenza consentita dal generatore diesel.

GEN connessione all'ingresso della rete: collega il generatore diesel alla porta di ingresso della rete.

Uscita carico intelligente: Questa modalità utilizza la connessione di ingresso Gen come un'uscita che riceve alimentazione solo quando il SOC della batteria e la potenza FV sono superiori a una soglia programmabile dall'utente

sono superiori a una soglia programmabile dall'utente. Per esempio ON: 100%, OFF: 95%: Quando il SOC del banco batterie raggiunge il 100%, Smart Load Port si accenderà automaticamente e alimenterà il carico collegato. quando il SOC del banco batterie è <95%, la porta di carico intelligente si spegnerà automaticamente.

Carico intelligente OFF Batt

· SOC della batteria al quale il carico intelligente si spegnerà.

Carico intelligente ON Batt

SOC della batteria al quale si accenderà il carico intelligente On-Grid sempre attivo: Quando è selezionato "On-Grid sempre attivo", la porta di carico intelligente continuerà sempre ad accendersi se l'inverter ibrido funziona in modalità On-Grid. Ingresso Micro Inv: Utilizza la porta GEN come porta di ingresso

Ingresso Micro Inv: Utilizza la porta GEN come porta di ingresso per una coppia CA, che può essere collegata a un microinverter o ad altri inverter collegati alla rete.

*Ingresso Micro Inv ON: Quando l'inverter ibrido funziona in modalità Off-Grid e il SOC o la tensione della batteria scende a questo valore impostato, i relè sulla porta GFM dell'inverter ibrido passeranno a normalmente chiusi (ON), quindi l'inverter Grid-Tied (allacciato alla rete) genererà energia solare e alimenterà l'inverter ibrido. Quando l'inverter ibrido funziona in modalità On-Grid, questo parametro non sarà valido, i relè sulla porta GEN dell'inverter ibrido saranno sempre normalmente chiusi (ON), l'inverter Grid-Tied può funzionare normalmente.

CA Coppia Frz Alta: Se si sceglie "Ingresso Micro Inv", man mano che il SOC della batteria raggiunge gradualmente il valore di impostazione (OFF), durante il processo, la potenza in uscita del microinverter diminuirà in modo lineare. Quando il SOC della batteria è pari al valore impostato (OFF), la frequenza del sistema diventerà il valore impostato (CA Coppia Frz Alta) e il Microinverters metterà di funzionare.

Esportazione Ml sulla rete viene interrotta: Interrompere l'esportazione dell'energia prodotta dal microinverter o dall'inverter collegato alla rete verso la rete.

Coppia CA sul lató del Carico: collegare uno o più inverter On-grid sul lato della porta di carico di questo inverter ibrido. Coppia CA sul lato della Rete: collegare uno o più inverter On-grid sul lato della porta di rete di questo inverter ibrido. *Nota: L'ingresso Micro Inv OFF e ON è valido solo per alcune versioni FW.

5.10 Menu di impostazione delle funzioni avanzate

Guasto Arco Solare ON (opzionale): questa funzione è facoltativa. Dopo aver abilitato questa funzione, l'inverter rileverà se c'è un guasto arco sul lato FV. Se si verifica un arco, l'inverter segnalerà un guasto e smetterà di erogare l'alimentazione.

Cancella Arc_Fault (opzionale): dopo aver eliminato il guasto arco sul lato FN, abilitando questa funzione è possibile eliminare l'allarme di guasto arco dell'inverter e ripristinare il normale funzionamento dell'inverter.
Autocontrollo del sistema: Disattivato. Questo è solo per la fabbrica.
Generazione Peak-shaving: Limita la potenza di uscita massima del generatore alla potenza nominale impostata nella pagina "GEN PORT USE", il resto del consumo energetico sarà fornito dall'inverter per garantire che il

generatore non si sovraccarichi. **DRM:** Modalità di risposta alla domanda, riceve comandi esterni per la pianificazione della potenza attiva e la programmazione della potenza

Ritardo del backup: Quando la rete si interrompe, l'inverter produrrà potenza dopo il tempo impostato.

Ad esempio, ritardo del backup: 600s. l'inverter fornirà potenza in uscita dopo 600s quando la rete si interrompe.

Nota: per alcune vecchie versioni FW la funzione non è disponibile.

*Modalità isola di segnale: Se è selezionata la "modalità isola del segnale" e quando l'inverter è in modalità Off-Grid, il relè sulla linea Neutra della porta di carico si accenderà, quindi la linea N della porta di carico si collegherà a terra.

*Se è stata selezionato questo elemento, assicurarsi che l'involucro dell'inverter sia collegato a terra, altrimenti si verificherà una scossa elettrica se si tocca l'involucro.

Porto di carico L1 L2 L3 N Relè Cavo di terra

Alimentazione a fase asimmetrica: Quando i carichi collegati alla porta Carico hanno una distribuzione sbilanciata sulle tre fasi e l'inverter funziona in modalità On-Grid, abilitando questa funzione si garantirà un uguale assorbimento di potenza dalle tre fasi della rete.

Parallelo: Abilitare questa funzione quando diversi inverter ibridi dello stesso modello sono collegati in parallelo.

Master: Selezionare qualsiasi inverter ibrido nel sistema in

Master: Selezionare qualsiasi inverter ibrido nel sistema in parallelo come inverter master e l'inverter master dovrà gestire la modalità di funzionamento del sistema in parallelo. Slave: Impostare gli altri inverter gestiti dall'inverter master

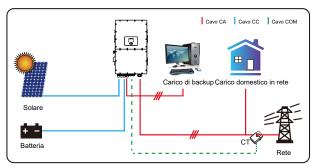
Slave: Impostare gli altri inverter gestiti dall^linverter master come inverter slave.

Modbus SN: l'indirizzo Modbus di ciascun inverter dovrebbe essere diverso.

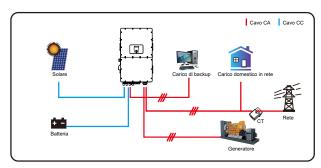
Baud Rate: la velocità alla quale l'inverter trasmette i dati. Ex. Meter per CT: quando si utilizza la modalità di esportazione zero in CT, l'inverter ibrido può selezionare la funzione EX. Meter per CT e utilizzare diversi contatori, ad esempio CHNT e Eastron.

Grid Tie Meter2: quando ci sono uno o più inverter collegati alla rete CA e accoppiati sul lato della porta di rete o di carico dell'inverter ibrido e un contatore esterno è installato per questo/questi inverter collegati alla rete, è necessario abilitare questa funzione per caricare i dati del contatore esterno sull'inverter ibrido per garantire che i dati di consumo energetico del carico siano corretti.

5.11 Menù delle informazioni del dispositivo

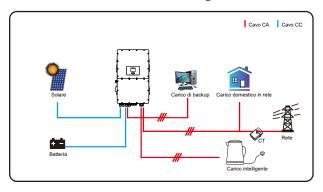


Questa pagina mostra l'ID dell'inverter, la versione dell'inverter e i codici di allarme.

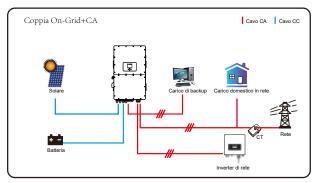

HMI: Versione LCD

MAIN: Versione FW della scheda di controllo

6. Modalità Modalità I: Base



Modalità II: Con generatore



Note: Il Generatore e la Rete non possono alimentare l'inverter contemporaneamente, quando l'inverter funziona in modalità rete, il relè sulla porta GEN dell'inverter sarà sempre aperto.

Modalità III: Con carico intelligente

Modalità IV: Coppia CA

La potenza di 1a priorità del sistema è sempre l'energia FV, quindi la potenza di 2a e 3a priorità sarà il banco batterie o la rete in base alle impostazioni. L'ultimo backup di alimentazione sarà il generatore, se disponibile.

7. Garanzia

Per quanto riguarda i termini di garanzia, fare riferimento al 《Accordo Generale di Garanzia - DEYE》.

Sotto la guida della nostra azienda, i clienti restituiscono i nostri prodotti in modo che la nostra azienda possa fornire un servizio di manutenzione o sostituzione di prodotti dello stesso valore. I clienti devono pagare le spese di trasporto necessarie e altri costi correlati. Qualsiasi sostituzione o riparazione del prodotto coprirà il restante periodo di garanzia del prodotto. Se qualsiasi parte del prodotto o del prodotto viene sostituita dalla società stessa durante il periodo di garanzia, tutti i diritti e gli interessi del prodotto o componente inserito appartengono alla società.

La garanzia di fabbrica non include i danni dovuti ai seguenti motivi:

- · Danni durante il trasporto dell'attrezzatura;
- · Danni causati da installazione o messa in servizio errata;
- · Danni causati dalla mancata osservanza delle istruzioni per l'uso, delle istruzioni di installazione o delle istruzioni di manutenzione;
- · Danni causati da tentativi di modificare, alterare o riparare i prodotti;
- · Danni causati da uso o funzionamento non corretti;
- · Danni causati da una ventilazione insufficiente delle apparecchiature;
- · Danni causati dal mancato rispetto delle norme o regolamenti di sicurezza applicabili;
- · Danni causati da calamità naturali o cause di forza maggiore (es. alluvioni, fulmini, sovratensioni, temporali, incendi, ecc.)

Inoltre, la normale usura o qualsiasi altro guasto non influirà sul funzionamento di base del prodotto.

Eventuali graffi esterni, macchie o naturale usura meccanica non rappresentano difetto del prodotto.

8. Risoluzione dei problemi

Eseguire la risoluzione dei problemi in base alle soluzioni nella tabella seguente. Contattare il servizio post-vendita se questi metodi non funzionano.

Raccogliere le informazioni di seguito riportate prima di contattare il servizio post-vendita, in modo da poter risolvere rapidamente i problemi.

- Informazioni sull'inverter come numero di serie, versione firmware, data di installazione, ora di guasto, frequenza di guasto, ecc. Ambiente di installazione, comprese le condizioni meteorologiche, se i moduli FV sono riparati o in ombra, ecc. Si consiglia di fornire alcune foto e video per assistere analizzando il problema.
- · Situazione della rete pubblica.

Codice di errore	Descrizione	Soluzioni
W01	Riservato	
W02	FAN_IN_Warn	1.Controllare lo stato operativo della ventola. 2.Se la ventola funziona in modo anomalo, aprire il coperchio dell'inverter per verificare il collegamento della ventola.
W03	Grid_phase_warn	Controllare la connessione della sequenza di fase della rete elettrica. Provare a cambiare il tipo di rete, 0, 240/120. Se non esiste ancora una soluzione, controllare il cablaggio alla rete.
W04	Meter_offline_warn	Errore di comunicazione del contatore. Controllare se la comunicazione del contatore è riuscita e se il cablaggio è normale.
W05	CT_WRONG_direction_warn	Controllare se la freccia sulla custodia del CT punta o meno verso l'inverter e controllare se la posizione di installazione dei CT è corretta.
W06	CT_Notconnect_warn	Controllare se i fili dei CT sono collegati correttamente oppure no.
W07	FAN_OUT1_Warn	Controllare se il FAN (Ventola) è collegato correttamente e funziona normalmente.
W08	FAN_OUT2_Warn	Controllare se il FAN (Ventola) è collegato correttamente e funziona normalmente.
W09	FAN_OUT3_Warn	Controllare se il FAN (Ventola) è collegato correttamente e funziona normalmente.
W10	VW_activate	1.Misurare se la tensione della porta della rete è troppo alta. 2.Controllare se il cavo CA è troppo sottile per trasportare corrente.
W31	Battery_comm_warn	Comunicazione anomala della batteria 1.Verificare se la connessione BMS è stabile. 2.Verificare se i dati BMS sono anomali.
W32	Parallel_comm_warn	Comunicazione parallela instabile 1. Controllare il collegamento della linea di comunicazione parallela. Non avvolgere la linea di comunicazione parallela con altri cavi. 2. Controllare se il dip switch parallelo è attivo.
F01	DC_Inversed_Failure	Controllare la polarità dell'ingresso FV.
F02	DC_Insulation_Failure	Controllare se il FV è collegato a terra, in secondo luogo, controllare se l'impedenza del FV verso terra è normale.
F03	GFDI_Failure	Controllare se i moduli FV sono messi a terra. Controllare se l'impedenza del FV verso terra è normale e se c'è corrente di dispersione.

Codice di errore	Descrizione	Soluzioni
F04	GFDI_Ground_Failure	Controllare se il FV è collegato a terra.
F05	EEPROM_Read_Failure	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F06	EEPROM_Write_Failure	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica
F07	DCDC1_START_Failure	La tensione del BUS non può essere raggiunta dal FV o dalla batteria. 1. Spegnere gli interruttori CC e riavviare l'inverter.
F08	DCDC2_START_Failure	La tensione del BUS non può essere raggiunta dal fotovoltaico o dalla batteria. 1. Spegnere gli interruttori CC e riavviare l'inverter.
F09	GBT_Failure	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica
F10	AuxPowerBoard_Failure	Controllare innanzitutto se l'interruttore dell'inverter è aperto. Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F11	AC_MainContactor_Failure	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F12	AC_SlaveContactor_Failure	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F13	Working_Mode_Change	1. Quando il tipo di rete e la frequenza sono cambiati, riporterà F13. 2. Quando la modalità batteria è stata modificata in "Nessuna modalità batteria, riporterà F13. 3. Per alcune vecchie versioni FW, riporterà F13 quando la modalità di lavoro del sistema è stata modificata. 4. Generalmente, questo errore scomparirà automaticamente. 5. Se rimane lo stesso, spegnere gli interruttori CC e CA per un minuto EEPROM_Write_Failure, quindi accendere gli interruttori CC e CA.
F14	DC_OverCurr_Failure	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F15	AC_OverCurr_SW_Failure	Guasto per sovracorrente lato CA 1. Controllare se l'alimentazione del carico di backup e l'alimentazione del carico comune rientrano nell'intervallo. 2. Riavviare e verificare se funziona normalmente.
F16	GFCI_Failure	Guasto corrente di dispersione 1. Controllare la connessione di terra del cavo lato FV. 2. Riavviare il sistema 2-3 volte.
F17	Tz_PV_OverCurr_Fault	1.Controllare la connessione FV e se il FV è instabile. 2.Riavviare l'inverter 3 volte
F18	Tz_AC_OverCurr_Fault	Guasto per sovracorrente lato CA 1. Controllare se la potenza del carico di backup e la potenza del carico comune rientrano nell'intervallo 2. Riavviare e verificare se è normale.
F19	Tz_Integ_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica

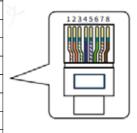
Codice di errore	Descrizione	Soluzioni
F20	Tz_Dc_OverCurr_Fault	Guasto per sovracorrente lato CC 1. Controllare il collegamento del modulo FV e il collegamento della batteria; 2. In modalità Off-Grid, l'avvio dell'inverter sotto un carico ad alta potenza potrebbe segnalare F20. Ridurre la potenza del carico collegato. 3. Se rimane uguale, spegnere gli interruttori CC e CA per un minuto, quindi accendere gli interruttori CC e CA.
F21	Tz_HV_Overcurr_Fault	Sovracorrente sul BUS 1.Controllare la corrente di ingresso FV e l'impostazione della corrente della batteria. 2.Riavviare il sistema 2~3 volte.
F22	Tz_EmergStop_Fault	Spegnimento da remoto Significa che l'inverter è controllato da remoto.
F23	Tz_GFCI_OC_Fault	Guasto corrente di dispersione 1. Controllare la connessione di terra del cavo lato FV. 2. Riavviare il sistema 2~3 volte.
F24	DC_Insulation_Fault	La resistenza di isolamento FV è troppo bassa 1. Controllare che il collegamento dei pannelli FV e dell'inverter sia saldo e corretto. 2. Controllare se il cavo PE dell'inverter è collegato a terra.
F25	DC_Feedback_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica
F26	BusUnbalance_Fault	1. Attendere qualche istante e verificare se funziona normalmente. 2. Quando la potenza di carico delle 3 fasi presenta una differenza significativa, verrà segnalato F26. 3. In caso di corrente di dispersione CC, verrà segnalato F26. 4. Riavviare il sistema 2~ 3 volte.
F27	DC_Insulation_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica
F28	DCIOver_M1_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica
F29	Parallel_Comm_Fault	1. Quando gli inverter sono collegati in parallelo, controllare la connessione del cavo di comunicazione parallela e l'impostazione dell'indirizzo di comunicazione dell'inverter ibrido. 2. Durante il periodo di avvio del sistema in parallelo, gli inverter segnaleranno F29. Ma quando tutti gli inverter sono in stato ON, scomparirà automaticamente.
F30	AC_MainContactor_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica
F31	AC_SlaveContactor_Fault	Verificare se l'orientamento della rete è corretto. Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F32	DCIOver_M2_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F33	AC_OverCurr_Fault	1.Verificare se la corrente di rete è eccessiva. 2. Riavviare l'inverter 3 volte e ripristinare le impostazioni di fabbrica.
F34	AC_Overload_Fault	Controllare la connessione del carico di backup e assicurarsi che rientri nell'intervallo di potenza consentito.

Codice di errore	Descrizione	Soluzioni
F35	AC_NoUtility_Fault	Controllare la tensione e la frequenza della rete, se la connessione alla rete elettrica è normale.
F36	Reserved	
F37	Reserved	
F38	Reserved	
F39	INT_AC_OverCurr_Fault	Sovracorrente CA dell'inverter, riavviare l'inverter.
F40	INT_DC_OverCurr_Fault	Sovracorrente CC dell'inverter, riavviare l'inverter
F41	Parallel_system_Stop	Controllare lo stato di funzionamento dell'inverter ibrido. Se si verifica almeno un arresto dell'inverter ibrido, tutti gli inverter ibridi segnaleranno l'errore F41
F42	Parallel_Version_Fault	1.Verificare se la versione dell'inverter è coerente. 2.Contattateci per aggiornare la versione del software.
F43	Reserved	
F44	Reserved	
F45	AC_UV_OverVolt_Fault	Tensione di rete fuori intervallo 1. Controllare che la tensione rientri o meno nel range delle specifiche. 2. Controllare se i cavi CA sono collegati saldamente e correttamente.
F46	AC_UV_UnderVolt_Fault	Tensione di rete fuori intervallo 1. Controllare che la tensione rientri o meno nell'intervallo delle specifiche. 2. Controllare se i cavi CA sono fissati saldamente e correttamente.
F47	AC_OverFreq_Fault	Frequenza di rete fuori intervallo 1. Controllare se la frequenza rientra nell'intervallo delle specifiche oppure no. 2. Controllare se i cavi CA sono fissati saldamente e correttamente.
F48	AC_UnderFreq_Fault	Frequenza di rete fuori intervallo 1. Controllare se la frequenza rientra nell'intervallo delle specifiche oppure no. 2. Controllare se i cavi CA sono collegati saldamente e correttamente.
F49	AC U GridCurr_DcHigh_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.
F50	AC V GridCurr_DcHigh_Fault	Riavviare l'inverter 3 volte e ripristinare alle impostazioni di fabbrica.

Codice di errore	Descrizione	Soluzioni
F51	Battery_Temp_High_Fault	Controllare se i dati di temperatura del BMS sono troppo alti.
F52	DC_VoltHigh_Fault	La tensione del BUS è troppo alta 1. Controllare se la tensione della batteria è troppo alta. 2. Controllare la tensione di ingresso FV, assicurarsi che rientri nell'intervallo consentito.
F53	DC_VoltLow_Fault	La tensione del BUS è troppo bassa 1. Controllare se la tensione della batteria è troppo bassa 2. Se la tensione della batteria è troppo bassa, utilizzare il FV o la rete per caricare la batteria.
F54	BAT2_VoltHigh_Fault	1.Verificare che la tensione del terminale 2 della batteria sia alta. 2.Riavviare l'inverter 2 volte e ripristinare alle impostazioni di fabbrica.
F55	BAT1_VoltHigh_Fault	1.Verificare che la tensione del terminale 1 della batteria sia alta. 2.Riavviare l'inverter 2 volte e ripristinare alle impostazioni di fabbrica.
F56	BAT1_VoltLow_Fault	1.Verificare che la tensione del terminale 1 della batteria sia bassa. 2.Riavviare l'inverter 2 volte e ripristinare alle impostazioni di fabbrica
F57	BAT2_VoltLow_Fault	Controllare che la tensione del terminale 2 della batteria sia bassa. Riavviare l'inverter 2 volte e ripristinare alle impostazioni di fabbrica.
F58	Battery_Comm_Lose	1.Significa che la comunicazione tra l'inverter ibrido e il BMS della batteria è disconnessa quando "BMS_Err-Stop" è attivo. 2.Per evitare questo errore, disabilitare la voce "BMS_ Err-Stop" sul display LCD.
F59	Reserved	
F60	GEN_FAULT	Controllare se la tensione e la frequenza del generatore sono normali, quindi riavviare.
F61	INVERTER_Manual_OFF	Controllare se l'interruttore dell'inverter è acceso, riavviare l'inverter e ripristinare alle impostazioni di fabbrica.
F62	DRM_Stop	Verificare che la funzione DRM sia attiva o meno.
F63	ARC_Fault	1.Il rilevamento del guasto ARC è solo per il mercato statunitense. 2. Controllare il collegamento del cavo del modulo fotovoltaico ed eliminare il guasto.
F64	Heatsink_HighTemp_Fault	La temperatura del dissipatore di calore è troppo alta 1.Verificare se la temperatura dell'ambiente di lavoro è troppo alta. 2.Spegnere l'inverter per 10 minuti e riavviarlo.

Grafico 8-1 Informazioni sui guasti

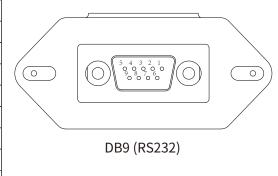
9. Scheda tecnica

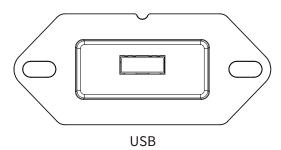

Modello	SUN-29.9K- SG01HP3- EU-BM3	SUN-30K- SG01HP3- EU-BM3	SUN-35K- SG01HP3- EU-BM3	SUN-40K- SG01HP3- EU-BM4	SUN-50K- SG01HP3- EU-BM4
Dati di ingresso della batteria	EU-BM3	EU-BM3	EU-BM3	EU-BM4	EU-BM4
Tipo di batteria	Ioni di litio				
Intervallo di tensione della batteria (V)			160-800		
Corrente di carica massima (A)			50+50		
Corrente di scarica massima (A)			50+50		
Strategia di ricarica per la batteria agli ioni di litio		Autoa	idattamento a	l BMS	
Numero di ingressi batteria			2		
Dati di ingresso della stringa FV	1				
Potenza di accesso FV massima (W)	59800	60000	70000	80000	100000
Potenza massima in ingresso FV (W)	47840	48000	56000	64000	80000
Tensione di ingresso massima FV (V)	11010	10000	1000	0.000	00000
Tensione di avvio (V)			180		
Intervallo di tensione in ingresso FV (V)			180-1000		
Intervallo di tensione MPPT (V)			150-850		
Intervallo di tensione MPPT a pieno carico (V)	360-850	360-850	420-850	360-850	450-850
Tensione nominale in ingresso FV (V)			600		
Corrente massima di ingresso FV operativa (A)		36+36+36		36+36-	+36+36
Corrente di cortocircuito massima in ingresso (A)		55+55+55		55+55-	
N. di tracker MPP/N. di stringhe tracker MPP	3/2+2+2 4/2+2+2+2			!+2+2	
Corrente di backfeed massima dell'inverter all'array		-,	0		
Dati di ingresso/uscita CA					
Potenza attiva ingresso/uscita CA nominale (W)	29900	30000	35000	40000	50000
Potenza apparente ingresso/uscita CA massima (VA)	29900	33000	38500	44000	55000
Potenza di picco (Off-Grid) (W)		1.5 volte d	i potenza nom	inale, 10 S	
Corrente nominale di ingresso/uscita CA (A)	45.4/43.4	45.5/43.5	53.1/50.8	60.7/58.0	75.8/72.5
Corrente massima di ingresso/uscita CA (A)	45.4/43.4	50/47.9	58.4/55.8	66.7/63.8	83.4/79.8
Passaggio CA continuo massimo (dalla rete al carico) (A)		•	200		
Corrente di guasto massima in uscita (A)	90.8	100	116.8	133.4	166.8
Protezione da sovracorrente in uscita massima (A)		144.2		192	2.3
Tensione/intervallo nominale di ingresso/uscita (V)		220/380V,	230/400V 0.85	5Un-1.1Un	
Modulo di connessione alla rete			3L+N+PE		
Frequenza/intervallo nominale della rete di ingresso/uscita			-55Hz 60Hz/		
Intervallo di regolazione del fattore di potenza			porta a 0.8 in		
Distorsione armonica totale della corrente THDi		<3% (de	ella potenza no	ominale)	
Corrente di iniezione CC			<0.5% In		
Efficienza			07.000		
Massima efficienza			97.60%		
Efficienza europea	97.00%				
Efficienza MPPT			>99%		
Protezione delle apparecchiatu	re		0,		
Protezione dalla connessione inversa di polarità CC			SÌ		
Protezione da sovracorrente in uscita CA	SÌ				
Protezione da sovratensione in uscita CA	SÌ				
Protezione da cortocircuito dell'uscita CA	SÌ				
Protezione termica	SÌ				
Monitoraggio dell'impedenza di isolamento del terminale CC	SÌ				

Monitoraggio della componente CC	SÌ	
Monitoraggio della corrente di guasto a terra	SÌ	
Interruttore automatico arco elettrico (AFCI)	Opzionale	
Monitoraggio della rete elettrica	SÌ	
Monitoraggio della protezione isola	SÌ	
Rilevamento dei guasti a terra	SÌ	
Interruttore di ingresso CC	SÌ	
Protezione dalla caduta del carico da sovratensione	SÌ	
Rilevamento corrente residua (RCD).	SÌ	
Livello di protezione contro le sovratensioni	TIPO II (CC), TIPO II (CA)	
Interfaccia		
Schermo	LCD+LED	
Interfaccia di comunicazione	RS232, RS485, CAN	
Modalità monitoraggio	GPRS/WIFI/Bluetooth/4G/LAN (opzionale)	
Dati generali		
Intervallo operativo di temperatura	-40 to +60°C, >45°C Declassamento	
Umidità ambientale consentita	0-100%	
Altitudine consentita	2000m	
Rumore	≤ 65 dB	
Grado di protezione dell'ingresso (IP).	IP 65	
Topologia dell'inverter	Non isolato	
Categoria di sovratensione	OVC II(CC), OVC III(CA)	
Dimensioni armadio (L*A*P) [mm]	527L×894A×294P (esclusi connettori e staffe)	
Peso (kg)	80	
Stile di installazione	Montaggio a parete	
Garanzia	5 anni/10 anni il periodo di garanzia dipende dal luogo di installazione finale dell'inverter, ulteriori informazioni fare riferimento alla politica di garanzia	
Tipo di raffreddamento	Raffreddamento ad aria intelligente	
Regolazione della rete	IEC 61727,IEC 62116,CEI 0-21,EN 50549,NRS 097,RD 140, UNE 217002,OVE-Richtlinie R25,G99,VDE-AR-N 4105	
Sicurezza EMC/Standard	IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2	

10. Appendice I

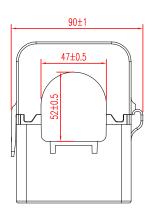
Definizione delle porte RJ45

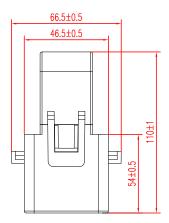

N.	Colore	BMS1	BMS2	Contatore	RS485
1	Arancione e bianco	485_B	485_B	485_B	485_B
2	Arancione	485_A	485_A	485_A	485_A
3	Verde e bianco	GND_485	GND_485	GND_COM	GND_485
4	Blu	CAN-H1	CAN-H2	485_B	
5	Blu e bianco	CAN-L1	CAN-L2	485_A	
6	Verde	GND_485	GND_485	GND_COM	GND_485
7	Marrone e bianco	485_A	485_A		485_A
8	Marrone	485_B	485_B	_	485_B

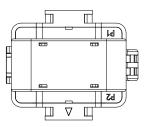


Questo modello di inverter ha due tipologie di interfaccia di login, DB9 e USB. Si prega di fare riferimento all' inverter effettivamente ricevuto per il tipo di interfaccia reale.

RS232


No.	RS232		
1			
2	TX		
3	RX		
4			
5	D-GND		
6			
7			
8			
9	12Vcc		





11. Appendice II

- 1. Dimensioni del trasformatore di corrente (CT) a nucleo diviso: (mm)
- 2. La lunghezza del cavo di uscita secondaria è di 4 m.

12. Dichiarazione di conformità UE

nell'ambito delle direttive UE

- · Compatibilità elettromagnetica 2014/30/UE (EMC)
- · Direttiva Bassa Tensione 2014/35/UE (LVD)
- · Limitazione dell'uso di determinate sostanze pericolose 2011/65/UE (RoHS)

 ϵ

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD. conferma con la presente che i prodotti descritti nel presente documento sono conformi ai requisiti fondamentali e alle altre disposizioni pertinenti delle direttive sopra menzionate. La dichiarazione di conformità UE completa e il certificato sono reperibili su: https://www.deyeinverter.com/download/#hybrid-inverter-5.

231009001

www.deyeinverter.com

Dichiarazione di conformità UE

Prodotto: Inverter Ibrido

Modelli:SUN-29.9K-SG01HP3-EU-BM3;SUN-30K-SG01HP3-EU-BM3;SUN-35K-SG01HP3-EU-BM3; SUN-40K-SG01HP3-EU-BM4;SUN-50K-SG01HP3-EU-BM4;

Nome e indirizzo del produttore: Ningbo Deye inverter Technology Co., Ltd. N. 26 South YongJiang Road, Daqi, Beilun, NingBo, Cina

La presente dichiarazione di conformità viene rilasciata sotto la sola responsabilità del produttore. Anche questo prodotto è coperto dalla garanzia del produttore.

La presente dichiarazione di conformità non è più valida: se il prodotto viene modificato, integrato o cambiato in altro modo, nonché nel caso in cui il prodotto venga utilizzato o installato in modo improprio.

L'oggetto della dichiarazione sopra descritta è conforme alla pertinente normativa di armonizzazione dell'Unione: La Direttiva Bassa Tensione (LVD) 2014/35/UE; la Direttiva Compatibilità Elettromagnetica (EMC) 2014/30/UE; la Direttiva sulla restrizione dell'uso di determinate sostanze pericolose (RoHS) 2011/65/UE.

Riferimenti alle pertinenti norme armonizzate utilizzate o riferimenti ad altre specifiche tecniche in relazione alle quali si dichiara la conformità:

•
•
•
•
•
•
•
•
•
•
•

Nom et Titre / Nome e Titolo:

Au nom de / A nome di: Date/Data (gg-mm-aaaa): A / Luogo:

EU DoC - v1

Bard Dai Ingegnere Senil Jose ell Standard elle Certificazioneso

Ningbo Deye Inverter Technology Co., Ltd. 2023-10-09 Ning Bo, Cina

Ningbo Deye Inverter Technology Co., Ltd. N. 26 South YongJiang Road, Daqi, Beilun, NingBo, Cina

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD.

Indirizzo: No.26 South YongJiang Road, Daqi, Beilun, NingBo, Cina.

Tel: +86 (0) 574 8622 8957 Fax: +86 (0)574 8622 8852 E-mail: service@deye.com.cn Web: www.deyeinverter.com

